
1

An Indented Level-Based Tree Drawing Algorithm
for Text Visualization

Xi He and Ying Zhu
Department of Computer Science

Georgia State University
Atlanta - 30303, USA

Email: xhe8@student.gsu.edu, yzhu@gsu.edu

Abstract—Level-based tree drawing is a common algorithm
that produces intuitive and clear presentations of hierarchically
structured information. However, new applications often intro-
duces new aesthetic requirements that call for new tree drawing
methods. In this paper, we propose an indented level-based
tree drawing algorithm for visualizing parse trees of English
language. This algorithm displays a tree with an aspect ratio
that fits the aspect ratio of the newer computer displays, while
presenting the words in a way that is easy to read. We discuss the
design of the algorithm and its application in text visualization
for linguistic analysis and language learning. An efficient and
practical implementation of the algorithm is also presented.

I. INTRODUCTION

Tree drawing is one of the most researched areas in data
visualization. They are widely used in biology, business,
chemistry, software engineering, artificial intelligence, Web
site design, data analysis, education, and social networks.

In graph theory, a tree is an undirected graph without simple
cycles. A typical tree consists of nodes and edges. Each node
represents an entity. Each edge represents the relationship
between entities. A tree with a root node is called a rooted
tree.

A tree drawing algorithm consists of a set of rules for
placing the nodes and drawing the edges. Some tree drawing
rules are introduced to address the characteristics of the
structure of the data. Some tree drawing rules are aesthetic
rules for the efficient use of space and clarity of presentation.
The most important aesthetics of tree drawings include area,
aspect ratio, subtree separation, closest leaf, and farthest leaf,
etc. A new application may introduce new aesthetic rules that
lead to new tree drawing algorithms.

We are developing a text analysis and visualization program
for linguistic studies and language learning. One of the main
features is the visualization of the parse tree for each sentence.
A parse tree is a rooted tree showing the syntactic structure
of a sentence or a string (Figure 1). Visualizing the parse
trees can help researchers or students analyze the structure
of the sentence and its complexity. The typical drawing of a
parse tree is a top-down, level-based tree (Fig. 2). This type
of drawing is intuitive and clear. But the drawback is that the
aspect ratio of the tree does not fit the aspect ratio of newer
computer displays. The tree grows vertically. The height of
the parse tree visualization is usually larger than its width,
particularly when the sentence is structurally sophisticated.

However, the standard aspect ratio of computer displays after
2012 is 16:9, with the width larger than the height. With a
dual monitor setup, the display is even wider. Therefore a
traditional parse tree visualization does not make optimal use
of the screen space. When multiple parse trees need to be
displayed in a sequence, this problem becomes even more
obvious.

Fig. 1: The syntactic structure of the sentence “Emily show
me a newly bought skirt with a blue flower image on it.”

Therefore, in our application and many similar cases, it is
more desirable to display the parse tree horizontally with the
root node on the left for the optimal use of space. In addition,
the leaf nodes (i.e. the words) should be placed in such a way
that they can still be read from left to right as a sentence.
This becomes a new aesthetic rule for tree drawing. Simply
drawing a tree horizontally with a level-based algorithm is
not user friendly because readers have to read the sentence
vertically (see Figure 3). A simple modification of the existing
level-based tree algorithm to create an indented display of
words also does not work because line crossings make the
tree difficult to read (see Figure 4).

To address this issue, we propose a new indented level-
based tree drawing algorithm that preserves the grammatical
structure of the parse tree but also allows users to read the
sentence from left to right. The resulting tree visualization
fits the aspect ratio of most computer displays better than the
traditional parse tree visualization. We also analyze the time
complexity of this algorithm and discuss the implementation
of this algorithm using JavaScript and d3.js.

The rest of the paper is organized as follows: Section II

2

Fig. 2: The traditional level-based parsed tree of the sentence
“Emily show me a newly bought skirt with a blue flower image
on it.”

S
V

P
N

P

JJ
only

N
N

skin

A
D

V
P

R
B

deep

.
.

N
P

N
N

P
B

eauty

V
B

Z
is

1

Fig. 3: The visualization of a parsing tree for the sentence
“Beauty is only skin deep.”. Note that the words are displayed
vertically and the sentence is hard to read.

briefly reviews the algorithms for level-based tree drawing
and non-layered tree drawing. Then we propose the new tree
drawing algorithm and define the related tree drawing problem
in Section III. In Section IV, we briefly review the Reingold
and Tilford algorithm, which is the basis of our algorithm.
We present the design details of our algorithm in Section V
and analyze its time complexity in Section VI. We also discuss
the implementation and usage of our algorithm in Section VII.
Finally, we summarize the paper in Section VIII.

II. RELATED WORK

A. Level-Based Tree Drawing Algorithms

The level-based tree drawing (also called layered tree draw-
ing) is the most popular tree drawing algorithm. The five main
aesthetic rules for level-based tree drawing include :

Aesthetic rule #1: Nodes of a tree at the same height should
lie along a straight line, and the straight lines defining the
levels should be parallel.

Aesthetic rule #2: A left child should be positioned to the
left of its ancestor and a right child to the right.

Aesthetic rule #3: A father should be centered over its
children.

Aesthetic rule #4: A tree and its mirror image should
produce drawings that are reflection of one another; moreover,
a subtree should be drawn the same way regardless of where
it occurs in the tree.

Aesthetic rule #5: Small, interior subtrees should be spaced
out evenly among larger subtrees. Small subtrees at the far left
or far right should be adjacent to larger subtrees.

A tree drawing algorithm needs to calculate the position of
each tree node in a way so that the resulting tree is aesthetically
pleasing and conserves space.

Knuth first published an algorithm for drawing binary
trees [1]. In 1979, Wetherell and Shannon [2] presented an
O(n) algorithm that satisfies aesthetic rules #1–3 while at
the same time minimizes width. A similar algorithm was
developed by Sweet [3]. In 1981, Reingold and Tilford [4]
presented an algorithm that was inspired by the Wetherell
and Shannon algorithm and addressed its flaws by satisfying
aesthetic rule #4. Then in 1990, Walker [5] presented an
improved method that satisfies aesthetic rule #5 for trees of
unbounded degree. In 2002, Buchheim et al. [6] improved
Walker’s algorithm so that drawing trees of unbounded degree
can be run in O(n) instead of O(n2) in Walker’s algorithm.
For a recent survey on tree drawing algorithms, please refer
to [7].

Our proposed algorithm falls into the category of level-
based tree drawing. In this algorithm, we introduce a new
aesthetic rule:

Aesthetic rule #6: A tree should be draw from left to right,
with the leaf nodes indented in such a way that they can be
read from left to right as a sentence.

B. Non-Layered Tree Drawing Algorithms

The level-based tree drawing algorithms assume that nodes
in the tree have uniform size. However, in many practical
applications, these tree nodes may have varying sizes. Non-
layered tree drawing algorithms are therefore designed to
generate a more vertically compact drawing which places child
nodes at a fixed distance from the parent nodes. Miyadera et
al. present an O(n2) algorithm [8] for non-layered trees that
horizontally positions parent nodes at a fixed offset from their
first child, instead of centering above the children. Many other
algorithms, such as Bloesch algorithm [9], Stein and Benteler
algorithm [10] and Li and Huang algorithm [11], Marriot et al.
algorithm [12] and Ploeg algorithm [13], employ the similar
idea. After preprocessing such as discretizing, they run the

3

Fig. 4: The simple modification of level-based parsed tree of the sentence “Emily show me a newly bought skirt with a blue
flower image on it.”

extended Reingold and Tilford algorithm [4] to draw the non-
layered trees.

III. DEFINING INDENTED LEVEL-BASED TREE DRAWING
PROBLEM

The indented level-based tree drawing (see Fig. 5 for
example) algorithm has the following properties:

1) A left child and a right child should be positioned on
the right of their parent node.

2) The root node is the leftmost node of the tree. The tree
is displayed horizontally.

3) The horizontal coordinates of the leaf nodes should be
indented in such a way that, starting with the top leaf
node, the leaf nodes are sorted horizontally from left to
right. In other words, the leaf nodes can be read from
left to right as a sentence.

A

B

C

D

E

F

G

DIST DIST DIST

1

Fig. 5: An example of the indented tree drawing. The leaf
nodes are sorted from left to right horizontally.

The indented tree drawing, due to its third property, will
first sort leaf nodes horizontally from left to right, and then
vertically from top to bottom. Therefore the tree drawing
problem is then reformulated as follows: given an input tree
structure, calculate the horizontal and vertical coordinates for
each node of the tree so that the drawing is compact and
satisfies the properties as listed above.

IV. REINGOLD AND TILFORD ALGORITHM

Reingold and Tilford Algorithm is one of the most important
and influential algorithms in the area of tree drawings, and
serves as the basis for our tree drawing algorithm. In this

section, we discuss its basic ideas and the major challenges it
has addressed.

Reingold and Tilford Algorithm is inspired by Wetherell
and Shannon algorithm [2]. Wetherell and Shannon algorithm
assigns equivalent vertical coordinates to nodes at the same
level, and keeps track of the next leftmost available horizontal
positions on each level when positioning nodes in an attempt
to keep the width of the tree minimal. It works well in many
cases, but can cause unpleasing result in some cases as the
width between two sibling nodes is unnecessarily expanded.
Reingold and Tilford proposed a new aesthetic (Aesthetic rule
#4), stating that a subtree should be drawn the same way
regardless of where it occurs in the tree. They designed a
new algorithm to incorporate this new aesthetic. Instead of
statically assigning the leftmost available position to nodes,
the algorithm recursively computes the horizontal coordinates
of the nodes and dynamically adjusts their positions. The brief
description of the algorithm is as follows:

Two tree traversals are used to produce the final horizontal
coordinates of nodes while their vertical coordinates can be
pre-determined with their levels. The first post-order traversal
assign the preliminary horizontal coordinates and modifier
fields for each node. The second pre-order traversal compute
the final horizontal coordinates for each node by summing its
preliminary horizontal coordinates and modifier fields of all of
its ancestors. In the post-order tree traversal, starting from leaf
nodes (the smallest subtrees), smaller subtrees are positioned
from left to right, and are combined with their parents to form
greater subtrees. Parent nodes are placed in the center of their
children. This process continues recursively until the root is
reached.

The vital part of the algorithm is how to position sibling
subtrees. For a given node, its subtrees are positioned one by
one, from left to right. When positioning a new child subtree,
the subtree is shifted right until the pre-defined distance
between the new subtree and its left sibling subtree (or sub-
forest) is reached. The process starts at the level of subtree
root. The subtree is pushed towards right so that the roots
of the subtree and its sibling subtree are separated by the
sibling separation value. At the next lower level, the subtree
is pushed towards right again if the leftmost node of the
subtree and the rightmost node of its sibling subtree at that
level is not separated by the subtree separation value. The

4

A

B

C D

E

F G

H I J

1

Fig. 6: Position subtree E on the right of subtree B. A traversal
of right contour of subtree B and left contour of subtree E is
needed to compute the proper distance to separate subtree B
and subtree E.

process continues until the bottom of the shorted subtree is
reached. The shifting distance of the subtree is stored in the
modifier field of the subtree root. In order to run the above
steps in O(n), Reingold and Tilford introduced the concept
of “contours”. The left (right) contour of a subtree is defined
as the sequence of leftmost (rightmost) nodes at each level in
the subtree. A linked list data structure is used to maintain the
contour. We demonstrate these concepts with an example in
Fig. 6. For simplicity, we refer subtree A as the subtree rooted
at node A. Subtree A consists of subtree B and subtree E. The
left contour of subtree B contains node B and node C and its
right contour contain node B and node D. Likewise, Nodes
E, F, H and nodes E, G, J compose the left and right contour
of the subtree E, respectively. When positioning subtree E,
node pairs (B, E) and (D, F) are examined at different level,
and subtree E will be shifted accordingly to maintain the pre-
defined distance between nodes in node pairs.

The construction of contours is recursively performed while
positioning subtrees. The parent subtree can form its left/right
contour by linking its root and the left/right contour of its child
subtrees. For example, the left contour of subtree A contain
node A, the left contour of subtree B, and node H which is
on the left contour of subtree E.

The second tree traversal, a preorder traversal, determines
the final horizontal coordinates for nodes. It starts at the
root of the tree, summing each node’s preliminary horizontal
coordinate value with the combined sum of the modifier fields
of its ancestors.

V. INDENTED REINGOLD AND TILFORD TREE DRAWING
ALGORITHM

Our tree drawing algorithm is based on Reingold and Tilford
algorithm [4] but with significant change, mainly because of
the third property listed in Section III. Namely the leaf nodes
need to be sorted horizontally. This property is in conflict with
the Aesthetic rule #1 in the Reingold and Tilford algorithm.
The underlying assumption in Reingold and Tilford algorithm
is that the vertical coordinates of each node is determined
by its level. In our case, this is no longer valid. Therefore,
our algorithm needs to compute both horizontal and vertical
coordinates recursively.

Here we still use a vertical tree for easier explanation. In
the implementation, the tree is draw horizontally.

The algorithm requires three traversals of a tree. The first
traversal is described in firstWalk procedure (See Algorithm 1).
Starting from the leaves that we consider the minimal subtrees
till the root of the whole tree, the algorithm recursively
computes and stores the relative positions of the subtree
root relative to their children (if they have any) and the
relative positions of the subtrees relative to their sibling
subtrees, respectively. The second tree traversal aggregates
these relative positions, and compute the final position for each
node. This process is described in secondWalk procedure (See
Algorithm 2). The last tree traversal redistributes the vertical
positions of nodes in order to make it look more pleasant while
still maintaining the properties of the indented tree drawing
(See Algorithm 3).

Algorithm 1 firstWalk procedure

1: procedure FIRSTWALK(TreeNode v)
2: TreeNode w . v’s left sibling
3: List<TreeNode> nodes . child of v
4: int mid . center of child

5: int len ← nodes.length
. Line 6-11 horizontal coordinates

6: if v is a non-leaf node then
7: mid=(nodes[0].prelimX+nodes[len-1].prelimX)/2
8: v.prelimX = mid;
9: else if w exists then

10: v.prelimX=w.prelimX+SS . SS: const
11: end if

. Line 12-19 vertical coordinates
12: if v is a non-leaf node then
13: v.prelimY=nodeY .prelimY+nodeY .modY-DIST;

. DIST: const

. nodeY is v’s child with the smallest vertical
coordinates

14: if w exists then
15: v.modY=w.modY+DIST*w.l;

. w.l denotes the number of its offspring leaves
16: end if
17: else if w exists then
18: v.prelimY=w.prelimY+DIST;
19: end if
20: if w exists then
21: Positioning v on the right of w
22: end if
23: end procedure

Like other positioning algorithms, our algorithm also uses
two separate fields for the positioning of tree nodes. For a non-
leaf leave, the prelimX or prelimY field of the node denotes its
relative horizontal or vertical position to its children while the
modX or modY field denotes the relative horizontal or vertical
position that the subtree root node is from its sibling subtree.
The position value in the modX or modY field of a node is
assigned based on the entire subtree rooted at the node, and

5

Algorithm 2 secondWalk procedure

1: procedure SECONDWALK(TreeNode v)
2: v.modX += v.parent.modX;
3: v.x = v.prelimX + v.modX;

. Line 2-3 Compute final horizontal coordinates
4: v.modY += v.parent.modY;
5: v.y = v.prelimY + v.modY;

. Line 4-5 Compute final vertical coordinates
6: end procedure

will be applied to all of its offspring nodes when calculating
their final coordinates. For a leaf node, only the prelimX or
prelimY is needed to denote its relative horizontal or vertical
position to its leftmost siblings. We assume in this paper that
the coordinate system has its original point at the top-left
corner. That is, if the height of a node is greater than that of
another node, then the node has a smaller vertical coordinate.

In order to decrease the complexity of computation, the
algorithm is designed to decouple the horizontal and vertical
positioning of nodes. There are three major steps that will
change the positions of the nodes. The first one is the initial
assignment of both horizontal and vertical positions to nodes
in accordance to the rules in the first tree traversal. The next
step is the subtree positioning, which adjusts the horizontal
positions of nodes. The third step is the node redistribution step
in the third tree traversal, which tunes the vertical positions
of nodes. We discuss these three steps in more details in the
coming sub-sections.

A. Assigning initial positions to nodes

We have defined rules for the assignment of horizontal and
vertical positions. For horizontal positioning, the rules state
that (1) if a node is a non-leaf node, then place it in the center
of its children; (2) if a node is a leaf with no sibling, assign
0 to prelimX field. (3) if a node is a leaf with a left sibling,
then place it to the right of its left sibling at a pre-defined
distance. The pseudo codes for these rules are listed in line
6-11 in Algorithm 1.

The rules for assigning vertical positions to nodes are more
complicated:

Rule 1: If a node is a leaf with no left sibling, assigns 0 to
its prelimY field.

Rule 2: If a node is a leaf with a left sibling, in order
to satisfy the third property of indented tree drawings, the
algorithm assigns w.prelimY+DIST to the node’s prelimY
field where w is the node’s left sibling and DIST is the pre-
defined distance.

Rule 3: If a node is a non-leaf node with no left sibling, in
order to guarantee that a node is higher than any of its children,
the algorithm assigns nodeY .prelimY+nodeY .modY-DIST
to the node’s prelimY field where nodeY is the child which
has the greatest height.

Rule 4: If a node is a non-leaf node with left siblings, not
only should this node be higher than any of its children, but
the entire subtree rooted on this node is also moved upwards
by DIST*w.l where w.l represents the number of leaf node

in its sibling subtrees. This is so because in order to satisfy
the third property of indented tree drawings, the leftmost leaf
of the current subtree should be DIST*w.l higher than the
leftmost leaf of its sibling subtree.

The pseudo codes for the above rules are listed in line 12-19
in Algorithm 1.

B. Positioning subtrees

The horizontal positioning discussed above only calculates
the relative position of a node to its siblings or children. The
task of positioning subtree aims at computing the relative
position of the current subtree to its sibling subtree (Line
21 in Algorithm 1). Positioning a subtree on the right of its
sibling subtree in the level-based tree drawing is a complicated
process since the algorithm has to travel the sequence of right-
most nodes in the left subtree and the sequence of leftmost
nodes in the right subtree in order to determine the minimal
shifting distance that can separate two subtrees at a pre-defined
distance. (We have discussed this process in Section IV.)
However, positioning subtrees in our tree drawing algorithm
is greatly simplified and can be achieved in O(1) time.

For a given subtree, we argue that its leftmost node is
its leftmost leaf. The proof is as follows: Assume the above
statement is not correct. In other words, the leftmost node of
a subtree is a non-leaf node. Since this is a non-leaf node, its
offsprings contain at least one leaf node, and according to the
second property of our tree drawing algorithm it is centered
among its children. If the non-leaf node has only one leaf
node, then it has the same horizontal coordinates as its leaf
node. This can prove that the leftmost of a subtree is a leaf
node. Otherwise, it must have a leaf node that is positioned
on its left. This is a contradiction. So we prove that for any
given subtree, its leftmost node is its leftmost leaf. With similar
method, we can also prove that a subtree’s rightmost node is
its rightmost leaf.

This property makes the task of positioning subtrees quite
simple. Traveling the left/right contour of right/left subtrees is
unnecessary because if the rightmost leaf in the left subtree
and the leftmost leaf in the right subtree are properly separated,
then other nodes in these two subtrees will be well separated.
In Fig. 7, for example, if node D and node H are well
separated, then nodes within subtree B and nodes within
subtree E are also well separated. The distance that a subtree is
moved is equivalent to the distance that the subtree’s leftmost
leaf is moved so that the leaf is properly separated from the
rightmost leaf of its left sibling subtree.

C. Redistributing nodes

In our algorithm, left sibling subtrees are gradually lifted
up in order to line up the leaf nodes from left to right. In
most cases this would not cause problems. However, in some
cases where the left subtree contains many more nodes than
the right subtree, the resulting tree drawing may look less
pleasant since nodes within the right subtree are not vertically
distributed evenly. In Fig. 8, the tree drawing on the left does
not look good as node A and node C is unnecessarily distant.

6

A

B

C

D

E

F

GH

I

J

SS

1

Fig. 7: Node D is the rightmost node in subtree B. Node H is
the leftmost node in subtree E. The task of positioning subtree
E is equivalent to separating Node D and Node H horizontally
at a distance of SS (a pre-defined constant).

A

B

C

A

B

C

D D

1

Fig. 8: The left tree drawing is less pleasant. The right tree
drawing is more pleasant after node C is repositioned.

The tree drawing on the right looks more pleasant after node
C is repositioned between node A and node D.

The task of node redistribution is to carry out another
tree traversal and redistribute the vertical positions of nodes
recursively so that the nodes within subtrees are vertically
more evenly distributed.

To implement the node redistribution, the algorithm requires
another pre-order tree traversal. For any visited node, the
algorithm recalculates the vertical coordinate for each of its
children. The calculation is based on the idea that nodes at
different levels within the visited node’s subtree should be
vertically and evenly positioned between the visited node and
the leaf. As described in Algorithm 3, the thirdWalk procedure
computes the allocatable space between the node and its
child, evenly splitting the space among different levels of the
subtree rooted on the child. It then determines the new vertical
coordinate of the child node.

Algorithm 3 thirdWalk procedure

1: procedure THIRDWALK(TreeNode v)
2: for each child u of v do
3: spots ← (u.y-v.y)/DIST-1;

. spots: # of vertical positions between v and u.
4: level ← u.level

. for a leaf node, its level is 1

. for a non-leaf node, its level is 1 plus the max
of its child’s level

5: ave ← spots/level
. ave: # of vertical positions u will be pulled

toward its parent.
6: u.y ← u.y-ave*DIST
7: end for
8: end procedure

VI. ALGORITHM ANALYSIS

Our algorithm is composed of three tree traversals. In
the first post-order tree traversal, for each node, the initial
assignment of coordinates takes O(1) time, and the associ-
ated subtree positioning takes O(1) time. So the total time
complexity for the first tree traversal is O(n). The second
pre-order tree traversal takes constant time for each node to
sum up the coordinates of its parent node. Therefore, its total
time complexity is O(n). The time complexity of the last tree
pre-order tree traversal is also O(n). We conclude the time
complexity for the algorithm is O(n).

VII. IMPLEMENTATION AND USAGE

We have implemented the indented level-based tree drawing
algorithm in JavaScript and integrated it into D3.js [14], a
popular JavaScript library for data visualization. The Layouts
package in D3.js library provides efficient implementation of
layout algorithms for various structures including the classic
level-based tree. It also offers helper functions to facilitate the
implementation of new layout algorithms.

Based on D3.js, we have added new APIs for quick con-
struction of the indented tree drawing. We explain some of the
APIs in Table I:

APIs Description
d3.layout.indentedtree Creates a new indented tree layout.
indentedtree.size Sets the available layout size.
indentedtree.sort Sets the sort order of sibling nodes.
indentedtree.separation Sets separation between nodes.
indentedtree.nodes Computes the tree layout.
indentedtree.links Returns edge positions.

TABLE I: APIs for the indented tree drawings

With these APIs, Web application developers only need to
write a few lines to draw indented trees and embed them in
their Web pages. The code snippet in Listing 1 provides a
showcase for drawing a simple indented tree.

Line 2 creates an instance of indented tree. Then in Line
3 the size of the tree drawing is specified. The positioning

7

Fig. 9: The indented level-based parsed tree of the sentence “Emily show me a newly bought skirt with a blue flower image
on it.”

algorithm is invoked in Line 6, and tree nodes’ horizontal and
vertical coordinates are returned. The positions of tree edges
are computed by pairing parent nodes and child nodes in Line
8. Once the position of tree nodes and edges are specified, then
other D3 drawing routines can be used to draw the indented
tree. Fig. 9 shows an example of the indented level-based tree
drawing created with our new APIs. Comparing that with the
traditional parsing tree in Fig. 1, we can see that our drawing
has a wider aspect ratio that fits better with newer computer
displays. It also places the words from left to right for easy
reading, while clearly presenting the syntactic structure of the
sentence.

1 / / Cr ea t e a t r e e l a y o u t
2 var t r e e = d3 . l a y o u t . i n d e n t e d t r e e () ;
3 t r e e . s i z e ([height , width]) ;
4 / / Compute nodes ’ p o s i t i o n s
5 / / r o o t : i n p u t da ta
6 var nodes = t r e e . nodes (roo t) ;
7 / / R e t r i e v e edges p o s i t i o n s
8 var edges = t r e e . l i n k s (nodes) ;
9 Draw nodes and edges with D3 r o u t i n e s .

Listing 1: Sample code for drawing an indented tree

VIII. CONCLUSION

In this paper, we propose a new indented level-based tree
drawing algorithm. This is a modified Reingold and Tilford
algorithm that satisfies a new aesthetic rule – make the tree
fit the wider aspect ratio of the newer computer display
while preserving the order of the leaf nodes in a sentence.
This is motivated by the need of visualizing parse trees in
a text visualization application. The new algorithm creates
a parse tree drawing that makes optimal use of the space
while maintaining the word order for easy reading. The new
algorithm also solves the problems of line crossings for tidy
presentation.

The proposed tree drawing algorithm is a useful comple-
ment to the traditional level-based tree drawing algorithms. In

addition to drawing parse trees, it can be applied to any tree
structure where the leaf nodes need to be horizontally sorted.

REFERENCES

[1] D. E. Knuth, “Optimum binary search trees,” Acta informatica, vol. 1,
no. 1, pp. 14–25, 1971.

[2] C. Wetherell and A. Shannon, “Tidy drawings of trees,” IEEE Transac-
tions on Software Engineering, no. 5, pp. 514–520, 1979.

[3] R. E. Sweet, “Empirical estimates of program entropy,” Xerox Res.
Cent., Tech. Rep., 1978.

[4] E. M. Reingold and J. S. Tilford, “Tidier drawings of trees,” IEEE
Transactions on Software Engineering, no. 2, pp. 223–228, 1981.

[5] J. Q. Walker, “A node-positioning algorithm for general trees,” Software:
Practice and Experience, vol. 20, no. 7, pp. 685–705, 1990.

[6] C. Buchheim, M. Jünger, and S. Leipert, “Improving walkers algorithm
to run in linear time,” in Graph Drawing. Springer, 2002, pp. 344–353.

[7] R. Tamassia, “Handbook of graph drawing and visualization,” CRC
Press 2013.

[8] Y. Miyadera, K. Anzai, H. Unno, and T. Yaku, “Depth-first layout
algorithm for trees,” Information processing letters, vol. 66, no. 4, pp.
187–194, 1998.

[9] A. Bloesch, “Aesthetic layout of generalized trees,” Software: Practice
and Experience, vol. 23, no. 8, pp. 817–827, 1993.

[10] B. Stein and F. Benteler, “On the generalized box-drawing of treessur-
vey and new technology,” in International Conference on Knowledge
Management, 2007, pp. 416–423.

[11] X. Li and J. Huang, “An improved generalized tree layout algorithm,”
in Informatics in Control, Automation and Robotics (CAR), 2010 2nd
International Asia Conference on, vol. 2. IEEE, 2010, pp. 163–166.

[12] K. Marriott, P. Sbarski, T. van Gelder, D. Prager, and A. Bulka, “Hi-trees
and their layout,” IEEE Transactions on Visualization and Computer
Graphics, vol. 17, no. 3, pp. 290–304, 2011.

[13] A. Ploeg, “Drawing non-layered tidy trees in linear time,” Software:
Practice and Experience, 2013.

[14] M. Bostock, V. Ogievetsky, and J. Heer, “D3 data-driven documents,”
IEEE Transactions on Visualization and Computer Graphics, vol. 17,
no. 12, pp. 2301–2309, 2011.

	Introduction
	Related Work
	Level-Based Tree Drawing Algorithms
	Non-Layered Tree Drawing Algorithms

	Defining Indented Level-Based Tree Drawing Problem
	Reingold and Tilford Algorithm
	Indented Reingold and Tilford Tree Drawing Algorithm
	Assigning initial positions to nodes
	Positioning subtrees
	Redistributing nodes

	Algorithm Analysis
	Implementation and Usage
	Conclusion
	References

