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Abstract—An efficient parallel priority queue is at the core
of the effort in parallelizing important non-numeric irregular
computations such as discrete event simulation scheduling and
branch-and-bound algorithms. GPGPUs can provide powerful
computing platform for such non-numeric computations if an
efficient parallel priority queue implementation is available. In
this paper, aiming at fine-grained applications, we develop an ef-
ficient parallel heap system employing CUDA. To our knowledge,
this is the first parallel priority queue implementation on many-
core architectures, thus represents a breakthrough. By allowing
wide heap nodes to enable thousands of simultaneous deletions
of highest priority items and insertions of new items, and taking
full advantage of CUDA’s data parallel SIMT architecture, we
demonstrate up to 30-fold absolute speedup for relatively fine-
grained compute loads compared to optimized sequential priority
queue implementation on fast multicores. Compared to this, our
optimized multicore parallelization of parallel heap yields only
2-3 fold speedup for such fine-grained loads. This parallelization
of a tree-based data structure on GPGPUs provides a roadmap
for future parallelizations of other such data structures.

I. INTRODUCTION

A priority queue is an important abstract data structure
for many non-numeric computations such as discrete event
simulation, branch-and-bound algorithms, and multi-processor
scheduling. Here is a scenario of how a priority queue is typi-
cally used in a practical application. A large complex network
simulator is a software that can simulate the behavior of a
large network (communication network, logic circuit, immune
system, or social network) under certain network events. A
common network event would be a message passing from
one compute node to another compute node. The important
task for the network simulator is to access the network events
in the order of the events’ timestamps, and process them.
For efficient execution, these network events are stored in
a priority queue with the events’ timestamps as priority. For
each iteration, the earliest network event is popped from the
priority queue for processing. Processing of network events
can trigger new network events, as a message will continue
to route to the next compute node after it has been carried
to an intermediate compute node, these new network events
will be inserted into the priority queue for future processing.
The process is repeated so that the network’s behavior can be
simulated and evaluated. What is fundamentally so difficult
about these irregular discrete problems? As we can see, many
of the priority queue application are computation-intensive,
but the parallelism is regular neither in space nor on time.

Although the network may have millions of nodes (or agents),
activity may only be in a few nodes, say 1% of them, at any
given step. What is worse, this set of active nodes, which can
be in tens of thousands, can be arbitrarily scattered across the
network. Likewise, in a state space search of an exponential
space, say for a SAT solver or a game of Chess, the set of
high-potential nodes (possibly closer to the goals) in any given
step is a tiny set, again scattered dynamically in space as
the computation unfolds. The network simulator can process
multiple independent network events simultaneously [1], but
one of the primary problems is how to efficiently retrieve
multiple earliest network events and insert new events to the
priority queue in parallel.

With the emergence of GPGPU (General Purpose Graphics
Processing Unit), a powerful computing platform is readily
available to scientists and engineers. Unfortunately, without
the support of an efficient parallel priority queue, a significant
class of related applications is not able to run on GPGPUs.
Considering the SIMT nature and inefficient implementation
of locks, developing an efficient parallel priority queue on
GPGPUs has been an outstanding challenge.

Our main contribution lies in our design of a parallel heap
based priority queue data structure for many-core architec-
tures. We follow this up with an efficient implementation of
the parallel heap system employing CUDA. Parallel heap is a
wide-node heap data structure which was shown by Prasad [2],
[3] to be the first theoretically efficient data structure to enable
O(p) operations in O(log n) time for p ≤ n, using p processors
on a n-sized heap on EREW PRAM shared memory model
of computation. This work thus also represents a successful
PRAM to GPGPUs port of a complex data structure. The
development of the parallel heap system also enables the
aforementioned class of priority queue based applications on
GPGPUs.

Most parallelizations of data structures behave very well for
coarse grained applications when the frequency of updates of
the data structure is low. The effectiveness of parallelization
is validated when the data structure is stress-tested with finer-
gained applications, with frequent updates, creating severe
contention among the competing processes/threads. Our par-
allelization on CUDA architectures is designed specifically
targeting the fine-grained application on CUDA’s SIMT archi-
tecture. We expose larger amount of concurrency of the under-
lying application in a data parallel fashion, allowing thousands
of insertions and deletions, and concurrent execution of large
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number of highest priority items with relatively finer grain.
We demonstrate that for such compute loads one can obtain
20 to 30 fold absolute speedups on GPUs. Compared to this,
our optimized multicore parallelization of parallel heap yields
only 2-3 fold speedup for such fine-grained loads.

The paper’s organization is as follows: Section II briefly
reviews the related work. After introducing the basic ideas
of the parallel heap and its key operations in Section III,
the system design and implementation is described in Section
IV. In Section V, comprehensive experiments conducted to
evaluate the system performance are described. We offer some
conclusions and future roadmap in Section VI.

II. RELATED WORK

A. Nvidia GPGPUs and CUDA

Modern Nvidia GPGPUs are fully programmable graphic
processing units. A GPGPU consists of an array of parallel
processors which are often referred to as streaming multi-
processors (SM). For example, in Nvidia’s 480 GTX chip,
a single SM consists of 32 scalar processors with each scalar
processor equipped with certain amounts of registers. Each
SM also has 48 KB on-chip memory which has lower access
latency and higher bandwidth compared to the global memory
which is accessible to every SM, and has larger size. The
SMs employ a SIMT (Single Instruction Multiple Thread)
architecture. A group of 32 threads called a warp is the
minimum execution unit. Once scheduled on a SM, the threads
in a warp share the same instruction and can execute in a fairly
synchronous fashion.

CUDA (Compute Unified Device Architecture) is a parallel
computing architecture developed for parallel processing and
enables the programmers to access to the instruction sets and
memory in the Nvidia GPGPUs. A typical CUDA program is
organized into host programs and one or more parallel kernel
programs. The host programs are executed on CPU while the
parallel kernel programs run on GPGPUs.

There are some performance considerations while program-
ming using CUDA. The first one is the number of threads
spawned in a CUDA program. When the instructions executed
by the threads in a warp must wait for a long-latency operation
such as the global memory read, other warps are scheduled to
be executed. The mechanism of tolerating the latency of expen-
sive operations using work from other warps is often referred
to as latency hiding. The mechanism can work due to the
fact that the thread management in GPGPUs is implemented
in hardware and is extremely efficient. Therefore, a CUDA
program should be designed to spawn as many threads as
possible so that enough threads are available to hide the latency
of expensive operations. The second consideration is the on-
chip shared memory provided by the SM. Considering that
the shared memory is much faster than the global memory but
smaller, it is advantageous if a CUDA program can partition
the data in the global memory into pieces that can fit into the
shared memory, load these pieces into the shared memory one
by one, process them, and then write the results back to the
global memory.

B. Priority Queue

There are a number of priority queue implementations in
the literature. The binary heap [4] is the most popular priority
queue implementation. It can be built in O(n) time, and its
insertion or deletion can be completed in O(log(N)) time.
If the priority queue does not need to support the union
operation, the binary heap usually is the best candidate for a
general-purpose comparison-based priority queue implemen-
tation. Another two important priority queue implementations
are binomial heaps [5] and fibonacci heaps [6]. They are
designed to support efficient union operations and therefore
are also called mergable heaps. The time complexity of the
union operation for two binomial heaps is O(log(N)).

There are three approaches to parallelize a priority queue.
The first one is to speed up the individual queue operation
using a small number of processors. For example, the parallel
priority queue in [7] can support insertion and deletion in
constant time with O(logN) processors. The second approach
is to support simultaneous insertion or deletion of k items
where k is a constant. The parallel heap [3] is based on
this approach. A parallel heap can insert O(k) new items
or delete the O(k) highest items in O(logN) time with
O(k) processors. The third approach is to allow concurrent
insertions or deletions over the queue. The concurrent heap
[8], a practical parallel priority queue on shared memory
architecture, is an example of this approach. However, the
maximum speedup a concurrent heap can achieve is bounded
by O(logN). Also, for a fine-grained application in which
many insertions or deletions compete for the access of the
heap, the heap will suffer severe memory contention and
performance gets downgraded.

For the many-core architecture, a memory synchronization
or lock is hard and inefficient to implement. So the priority
queue implementation based on locking is not preferable. The
parallel heap is built on the barrier concept, and since the ker-
nel call in CUDA implicitly enforces a barrier on all threads,
the parallel heap is more suitable for the CUDA system. Also,
GPGPUs can be best utilized when there are enough threads to
be executed. The insert and delete operations in a parallel heap
with large heap nodes can provide considerable threads to fill
the GPGPUs. Lastly, the concurrent kernel feature introduced
in Nvidia Fermi-based GPGPUs can enable the parallel heap’s
pipeline schemes, and further enhance system’s performance.

CUDA 4.0 and above can provide concurrent kernels sup-
port, allowing multiple independent kernels to be executed
simultaneously and more efficiently, provided there are enough
idle processors on the GPGPU. CUDA 4.0 can support at most
16 concurrent kernels whereas CUDA 5.0 allows up to 32
concurrent kernels. The concurrent kernels are managed by
streams that can contain a number of kernels. When a CUDA
program launches a kernel, it specifies which stream the kernel
will be assigned to. Once assigned, the kernels in the same
stream are executed in FIFO fashion while kernels in distinct
streams are independent, and can run concurrently. CUDA also
provides runtime APIs to synchronize between streams. The
feature of concurrent kernels makes it possible to enable the
parallel execution of priority queue applications and priority
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queue maintenance so that the computing resources of the
GPGPU can be fully utilized and the overall efficiency of the
priority queue system is enhanced.

C. Parallel Data Structures on Many-core architectures

As GPGPUs are widely used in both industry and aca-
demics, the research into parallel data structures on many-
core architectures have become very urgent and promising. A
number of tree-based data structures, such as R-tree [9], KD-
tree [10]–[12], Octree [13]–[19], decision tree [20], [21], and
bounding volume hierarchy [22] have been ported to GPGPUs.
Besides the tree-based data structures, hash tables on GPGPUs
have also been discussed in [23]–[25].

The difficulty of porting data structures to GPGPU lies
in how data structures’ operations are implemented so that
GPGPUs’ streaming processors can be fully utilized and a
good speedup can be achieved. GPGPUs’ SIMT architecture,
latency toleration mechanism, and inefficient synchronization
are important factors to be considered. We classify data
structures’ constructions into two categories: online and offline
constructions. An online construction refers to the construc-
tion in which the data structure is built by inserting new
items iteratively as they arrive. On the contrary, an offline
construction is that the data structure is built with all of the
items available a priori. A fair amount of research effort has
been put into the parallel offline construction considering the
data parallel computation and synchronization-free feature in
offline constructions. Parallel searches are another popular
research topics for the similar reason.

However, to our knowledge, there is no prior research
on dynamic update operations for parallel data structures on
many-core architectures, due to the complications of synchro-
nization, dead-lock, and other problems. The past solution for
implementing update operations on many-core architectures is
to simply rebuild the data structures [26]. The parallel heap
data structure we present in this paper demonstrates a possible
way for efficiently implementing parallel data structures’ insert
or delete operations on many-core architectures in an offline
fashion.

III. PARALLEL HEAP

A. Overview

A binary heap data structure [4] can be viewed as a full
and complete binary tree where each node of the binary heap
contains one item. Each item has an associated value and
priority. For binary min-heaps, the smaller the value of an
item, the higher its priority. The basic property of a binary
min-heap is that the value of the item in each heap node is
no larger than those in its children. Thus the item with the
highest priority is always kept at the root node. Since insertion
of a new item or deletion of the item with the highest priority
might destroy such property, a “heapify” process is usually
required to restore the binary heap’s property after insertions
or deletions.

A concurrent heap data structure [8] is simply a parallelized
binary heap in which parallelism is obtained by concurrent
insertion and deletion over the heap. Similar to the binary

heap, each node in the concurrent heap contains one item and
satisfies the basic heap property. Unlike the binary heap, the
insert operation in concurrent heaps proceeds in a top-down
fashion. An insert item moves along a unique path from the
root to the target node. This adjustment allows both insert and
delete operations to get executed in a pipelined fashion without
worrying about “dead lock”.

A parallel heap data structure [3] in some sense can be
regarded as an improved concurrent heap with more consider-
ations for fine-grained applications. A parallel heap with node
capacity r ≥ 1 is a complete binary tree such that

• each node (except the last node) contains r sorted keys.
• all r keys at a node have values less than or equal to the

keys at its children.
Since there are r keys in a single heap node, the insert

and delete operations over these keys can be aggregated
and processed together in batches. Much more parallelism
therefore can be extracted and exploited. Also, the pipelined
insert and delete operations in a parallel heap can be regulated
in a step-by-step manner, making the kernel-based CUDA
platform very suitable for its implementation.

B. Insert and Delete Operation

A parallel heap’s insert and delete operations are performed
in a series of delete-insert cycles. Every delete-insert cycle
takes care of the insertion of k (k <= 2r) new keys and the
deletion of r keys with the highest priority. The following are
three steps of execution in each delete-insert cycle.

1) Merge the k new keys with the r keys at the root node
and sort these keys. Delete the first r sorted keys for the
parallel heap application, and substitute the keys at the
root node with the second r keys. The remaining keys
are used to initiate a new insert-update process in the
next step.

2) Initiate a new delete-update and insert-update process
starting at the root node. Simultaneously, process the
delete-update and insert-update processes at the even-
level of the parallel heap.

3) Process the delete-update and insert-update processes at
the odd-level of the parallel heap.

In Step 1, k new keys are input to the parallel heap.1 If k is
equal to and less than r, then no insert-update process will be
initiated in Step 2. Particularly, when k is less than r, (r− k)
keys have to be retrieved from the end of the parallel heap or
from an insert-update process heading towards the last node.
If k is more than r and the last node does not have enough
space to hold k − r keys, then two insert-update processes in
Step 2 are launched to insert the keys into two distinct heap
nodes. Otherwise, only one insert-update is needed.

As the second r keys are placed at the root node, the
heap’s property might be destroyed. As a result, a delete-
update process is initiated by merging the keys at the root
node with those at its children. The smallest r keys are kept
at the root node while the second r smallest keys are placed
at the left child node if its largest key is bigger than that

1We assume k <= 2r, but other value can also work.
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of the right child node, otherwise the second r smallest keys
are placed at the right child node. Finally, the largest r keys
are placed at the other child node. It can be proved that
with such a placement, only the child node placed with the
largest r keys might destroy the heap’s property, so the delete-
update process may continue on this node. The delete-update
process repeats until it goes to the bottom of the heap or if
the parallel heap property gets satisfied midway. Similarly, an
insert-update process starts at the root node, and ‘sinks’ toward
their target node at the bottom of the parallel heap after being
repeatedly merged with the keys at the intervening nodes, and
carrying down the larger keys each time. In Step 2 and Step 3
of the delete-insert cycle, each delete-update or insert-update
process is moved down two levels in a parallel heap, so there
are always multiple delete-update and insert-update processes
coexisting in the parallel heap and carried out in a pipelined
fashion for overall optimality.

Figure 1, 2, and 3 illustrate a delete and insert operation
of a sample parallel heap. In Figure 1, four new keys 9, 27,
31,and 38 enter a 4-level parallel heap with r = 2. The four
keys are merged with two keys, 18 and 23, at the root node
in the buffer. The smallest 2 keys in the buffer, 9 and18,
are deleted and transferred to the priority queue application.
The next smallest 2 keys, 23 and 27, are placed at the root
node and a delete-update process is initiated to maintain the
destroyed heap property. The remaining keys, 31 and 38, are
to be inserted into the parallel heap through two insert-update
processes along the two insertion paths, as shown in Figure 2.

The delete-update process first restores the heap property
at the root node by merging and replacing the keys at node 1
(root node), node 2, and node 3. After placing the largest keys,
31 and 32, on node 3, the heap property at node 3 is destroyed
and the delete-update process has to continue to work on node
3, node 6 and node 7. Afterwards, the delete-update process is
done since there are no children for node 6, and node 7. The
first insert-update process proceeds by merging with keys at
node 1, node 2, and node 5 and carrying the largest keys down
each time. When the insert-update process is done, the key 38
is inserted into node 11. Similarly, the second insert-update
process works with node 1, node 3, and node 6. The key 42
eventually goes to node 12. Figure 3 shows the parallel heap
after the delete-update and insert-update operations. Note that
the delete-update process only has one even-level and one odd-
level merging, so it can be done in one delete-insert cycle. The
two insert-update processes have two even-level and one odd-
level merging, so it is done in two consecutive delete-insert
cycles.

IV. SYSTEM DESIGN AND IMPLEMENTATION

A. Overview

Our parallel heap system architected for CUDA platforms is
composed of three major components: a controller, a parallel
heap manager and a priority queue application, as shown in
Figure 4. The controller is located on the CPU side while the
other two components are on the GPU side. The controller
is at the heart of the system acting as the mediator between
the parallel heap manager and the priority queue application,
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Fig. 1: A parallel heap with r=2. The upcoming delete-insert
cycle has 4 input keys: 9, 27, 31, 38.
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Fig. 2: The input keys are merged with the keys at the
root node. One delete-update process and two insert-update
processes are launched.
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Fig. 3: The parallel heap after a delete and insert operation.

and controlling the flow of the entire system. The parallel
heap manager consists of a parallel heap and other related
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data structures in the device memory, and a set of kernel
functions that implements the interfaces of a priority queue and
maintains the parallel heap data structure. The priority queue
application notifies the controller when its output data, the set
of newly-produced insert items, is ready, it then suspends itself
and waits for the input data, the set of highest priority items to
be deleted from the parallel heap. Then the controller asks the
parallel heap manager to merge the new items from the priority
queue application with items at the heap’s root node, to sort
them and to return the r smallest items to the priority queue
application. Once done, the controller informs the priority
queue application to resume with the r smallest data items
from the parallel heap manager, and at the same time, requests
the parallel heap manager to launch a new delete-insert cycle
to maintain the parallel heap. The above process is repeated
until the priority queue application is completed.

Controller

CPU

Queue

Priority Queue Application

Delete-table Delete-buffer

Parallel heap manager

Parallel heap data-structure

insert-table insert-buffer

GPU Kernels

3.1: Process deleted items

1: Notify new items
are ready

2: Merge and sort
new items

3.2: Initiate a new
delete-insert cycle

Fig. 4: System Architecture Control Flow

B. The Controller Component

The programming model of CUDA is different from that of
the traditional CPU-based systems. In the CPU-based systems,
programs are executed on CPU and related data structures are
maintained in the main memory. In CUDA, however, most
computation tasks are done on the GPGPU side in forms of
kernel calls, and therefore their respective data structures need
to be stored in the device memory. The programs running
on the CPU are used to perform the sequential tasks and
are combined with the programs on the GPGPU side to
form a complete application. The controller in the parallel
heap system is the component particularly required by the
programming model of CUDA. It is responsible for managing
the parallel heap manager and the priority queue application,
and connecting these two components together. As shown
in Figure 5, after the merging of the new items with the
items at the root and the deletions of the smallest r items
performed by the parallel heap manager, the controller needs
to synchronize both the parallel heap manager and the priority
queue application with a global barrier, and then initiate a new
delete-insert cycle in the parallel heap manager and resume
the priority queue application. The concurrent kernel feature
of new CUDA-enabled GPGPUs make it possible to execute

the parallel heap manager and the priority queue application
concurrently, extracting additional parallelism for the parallel
heap system. In our design, the kernel functions of the parallel
heap manager and those of the priority queue application are
assigned to distinct CUDA streams, with the kernel functions
within a stream being executed in the FIFO order. The insert
and delete operations in each delete-insert cycle of a parallel
heap is implemented as a set of kernel functions with the
kernel calls acting as stream-level barriers to enforce the
pipelined update of the parallel heap.

The implementation of the controller is also very critical to
the whole system’s performance. One of the most important
design considerations for the CUDA programs is the data
parallel SIMT architecture of the GPGPUs. SIMT architectures
require that all threads within a warp must execute the same
instruction in any clock, and therefore the conditional branches
are not preferred in CUDA programs. For example, in an
if-then-else construct, if some threads in a warp take the
then path and some the else path, two passes are needed
for the execution of the construct. One pass will be used to
execute all threads that take the then path and a pass will
be used to execute the others. In the implementation of the
parallel heap manager, however, a number of special cases
such as the delete-update process of the last partially-filled
heap node, the earlier terminated delete-update processes, etc.,
have to be considered. The kernel function will be full of
conditional branches and its performance will suffer if all
of these special cases are dealt with in one kernel function.
Therefore we have seperate kernel functions implemented for
each of these special cases and the controller determines which
kernel functions should be executed in accordance with the
current status of the parallel heap.

To allow the controller to better collaborate with the parallel
heap manager, maintaining the status of the parallel heap
within the controller is necessary even though the parallel heap
data structure is stored in device memory. In each iteration,
the number of new items produced can dynamically change
the state of the heap, such as the total number of heap nodes
and the number of levels in the heap. To maintain these
critical information that many kernel calls rely on, a queue data
structure is employed by the controller to keep track of these
changes in our implementation. By pushing the number of new
items in each iteration into the queue and popping the number
of items as delete-update and insert-update processes get
completed, the current status of the parallel heap is computed
and maintained in the controller component.

C. Design for Delete-update and Insert-update Processes

As explained in Section III, there are usually one delete-
update and up to two insert-update on-going processes on
every two adjacent levels of the parallel heap. Two data
structures (Figure 6) are designed to facilitate the concurrent
execution of these delete-update processes. One is referred
to as the delete-table. This table only has one column. Each
row in the table corresponds to one delete-update process,
and stores the index of the target heap node. The other
data structure, delete-buffer, provides the working space for
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Fig. 5: The flow chart of the parallel heap system

the delete-update process. All of the delete-update processes
are launched in a function call, in which each delete-update
process is assigned a set of threads for execution. The delete-
update processes read their respective rows in the delete-
table for locating the target heap node, copy the items at the
target heap node and its children into the delete-buffer, and
sort the items in the delete-buffer. Once done, the items are
written back to the appropriate heap nodes and the delete-
table is updated for the next processing. The design can also
be improved by keeping the largest r items in the delete-
buffer after the completion of the current processing as these
items will be reused in the next iteration, and thus reducing
the expensive device-to-device memory copy. Accordingly, the
delete-table and delete-buffer need to be adapted to a queue
structure with a pointer pointing to the starting row. In Figure
6, there are two delete-update processes in the heap. They will
restore the heap property at node 1 and node 4. The delete-
buffer stores the items at node 1 and its children, and the items
at node 4 and its children for processing, respectively.

Two similar data structures, insert-table and insert-buffer,
are designed for insert-update processes. The insert-table has
four columns representing the index of the target heap node,
the offset of the next available slot in the target heap node,
the level where the target heap node is located in the parallel
heap, and the number of items to be inserted, respectively.
The insert-update process uses these information to compute
and select the target node in its insert path for the current
processing. Before arriving to their target nodes, the to-be-
inserted items are temporarily stored in the insert-buffer, which
also provides working space for merging and sorting items. In
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Fig. 6: Data structures for delete-update processes

Figure 7, there are two insert processes depicted, one at node
7 and another at node 1. A key 54 is to be inserted into node
15. A insert-update process therefore merges it with the items
at node 7. Likewise, two keys 56 and 78, currently at node
1, are headed to node 16. The insert-update process merges
them with the items at node 1.
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Fig. 7: Data structures for insert-update processes

When dealing with the situation in which there are not
enough new items for deletions, a kernel function is invoked
to search for the to-be-inserted items in the insert-buffer. r−k
to-be-inserted items are deleted from the insert-buffer and
corresponding insert-update processes are cancelled if there
are more than r − k items in the insert-buffer. Otherwise,
the items from both the insert-buffer and the end of the
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heap are taken. This can be a tricky operation if this has to
be concurrently executed while insert processes are ongoing.
However, when this kernel is invoked by the CPU based
controller, it does not have to contend with any other pipelined
processes.

D. Sorting Implementation

In the original paper [3], only merge operations are needed
by both delete-update and insert-update processes. In our
implementation, however, we choose to sort items at heap
nodes instead of merging them (for delete-update processes,
two merge operations are required) considering inefficiency
of the implementation of the merge operation on GPGPUs
and the relatively less work of adapting the existing sorting
routine to satisfy our need. The most efficient sorting routine
on GPGPUs so far is the radix sort implementation [27], which
is the starting point of our sorting implementation.

The main modification we made over the original sorting
routine is to enable concurrent sorting and make full use of
GPGPUs’ computing resources. In the modified radix sort
implementation, r/512 thread blocks are allocated for each
sequence of items to be sorted, and the functionality is broken
down into multiple kernel functions. The program is parti-
tioned into passes, in each of which items within a sequence
are sorted based on item’s radix-4 digit. A synchronization is
required between passes. Each pass consists of the following
phases:

• Assign r/512 number of thread blocks for each sequence.
Within a sequence, the items are partitioned into tiles.
Each thread block loads its tile onto the shared memory
and sorts the tile.

• Allocate a histogram table for each thread block. Within
a sequence, compute the histogram and thus the global
offset for each item.

• Within a sequence, write each item to its correct position
in accord with its global offset.

E. The simulation of a priority queue application

The parallel heap system we present in the paper can support
different kinds of priority queue based applications. A kernel
function is used to simulate a typical application:

__global__ void app(int thinktime,int r){
int tx=threadIdx.x;
int bx=blockIdx.x;
int i;
if(bx*SIZE+tx<r){

for(i=0;i<thinktime;i++){
......

}
}

}

The kernel function spawns r threads with each thread
running a for-loop thinktime times. By varying the value of
thinktime, we can vary the grains of the application. Some
trivial codes need to be in the for loop to prevent the for loop
from being compiled away.

V. EXPERIMENTS

A. Experimental Setup

Our current system for experiments is a Linux Infiniband
88-core cluster with heterogeneous nodes composed of multi-
cores and GPGPUs. The multicores processors we use in the
experiment are two Intel Xeon 5410 chip, each of which has
Intel’s two quad-core chips paired onto a multi chip module
(MCM). Each core operates at 2.3 GHz and can fetch and
decode four instructions per cycle. Each core has on-die,
primary 32-kB instruction cache and 32-kB write-back data
cache in each core and 12 MB (2 x 6MB) Level 2 cache. The
graphics card for our experiments is Nvidia GeForce GTX
480. It is based on Fermi architecture, and equipped with 480
cores and 1.5 GB device memory.

We have three goals in our experiments. Firstly, we would
like to evaluate the performance of our CUDA-based parallel
heap system under the load of applications with different
granularities. We would also like to see the impact of heap
node size, which corresponds to the amount of available
parallelism in the application, on the system’s performance.
Secondly, we want to compare the performance of the best
sequential binary heap system with our parallel heap system.
Lastly, we want to test the performance difference of the
parallel heap implementation on CUDA architectures versus
on multi-core architectures.

There are two important experiment modes. One is the hold
model [28], in which the number of items to be inserted is
exactly equal to the number of items to be deleted. The other
model is the relaxed hold model, which randomly generates
zero, one or two items for each item deleted. The relaxed hold
model, which is more realistic for applications, is employed
in our experiment.

The number of elements to be deleted or inserted, the think
time, and the number of initial items in the heap are important
factors in the experiment. We use r, n, t, and s to represent the
size of a heap node, the number of initial items in the heap,
the think time, and the total number of inserted or deleted
items through the entire experiment over all delete-think-insert
cycles respectively.

B. Performance Analysis

The performance of the parallel heap system (Parallel Prior-
ity Queue or PPQ) on CUDA is tested with varying think time
and size of heap nodes. It is also compared with a sequential
binary heap system (SeqHeap) and multicore implementation
of PPQ.

Figure 8 shows the performance comparison of the parallel
heap system implemented with sequential kernels and con-
current streaming kernels — the former corresponds to the
application getting executed after parallel heap maintenance
kernels, while the latter executes the two sets of kernels
simultaneously in different streams. The red line is used to
represent a parallel heap system implemented with sequential
kernels. We can observe that the increase of its execution time
is proportional to the increasing duration of the think time
while other conditions remain unchanged. On the other hand,
the blue line, standing for a parallel heap system implemented
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Fig. 8: Effect of concurrent kernels versus sequential kernels.
(s = 214; n = 217; r = 28)

with concurrent kernels, is observed to stay stable when deal-
ing with a fine-grained application (t < 12000). This is due to
the fact that the execution of the application is tolerated by the
maintenance work of the parallel heap. However, as the grain
of the application becomes coarser, the system’s performance
gets dominated by the application’s performance, and as a
result the duration of the think time becomes significant for the
system’s performance (beyond t > 12000). Therefore, for all
subsequent experiments, we report data employing concurrent
kernels.

Fig. 9: Varying size of heap nodes. (t = 6000; s = 222;
n = 226)

Figure 9 shows the performance of our parallel heap with
different size of heap nodes. We can observe that the more
items a heap node contains, the better performance the system
achieves. On one hand, to insert or delete same amount of
items, the number of the required delete-insert cycles can be
reduced if a heap node can contain more items and thus more
items can be updated in one update process. On the other
hand, the latency toleration mechanism in GPGPUs required
that enough threads exist in GPGPUs so that expensive global
memory reads/writes can be tolerated. In other words, the
wait for global memory reads/writes can keep processors in
GPGPUs idle if not enough live threads can be scheduled
to run, and in that case, launching more threads in GPGPUs
can help utilize these idle processes without much additional

Fig. 10: Comparing of a parallel heap on CUDA and a
sequential heap with different think time. (s = 222; n = 226;
r = 217)

overhead. Consequently, the increment of the number of
items to be updated in one update operation does not cause
proportional increase in this update operation’s execution time
and the overall system performance can thus enhance with
fewer delete-insert cycles.

The wide heap node in the parallel heap can also be justified.
With more computing resource, one can execute a very large
complex heap-based application that can exhibit increasingly
larger amount of concurrency. In our CUDA parallel heap
system, we try to push more work to the GPGPUs to make full
use of the GPGPUs. As the size of the heap node increases, the
heap maintenance and the application kernels get more work
to perform and hence the overall performance of the system
improves.

Fig. 11: Absolute speedups of parallel heap with different think
time. (s = 222; r = 217; n = 226)

We also implemented a sequential binary heap system
(SeqHeap) on much faster CPU multi-cores for comparison.
This system is more efficient than the conventional binary
heap system as it can combine a pair of consecutive insert
and delete operations into one insert-delete operation. The red
line in Figure 10 shows that the duration of the think time is
significant to the performance of the sequential heap. The blue
line represents the PPQ performance under varying loads of
different fine-to-medium grained applications. As we can see,
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Fig. 12: Absolute speedups with varying size of heap nodes.
(t = 6000; s = 222; n = 226)

the whole system’s performance remains stable with different
compute grains. As in the discussion for Figure 8, due to the
concurrent kernel techniques we employ, the execution of fine-
grained applications is well tolerated by the parallel heap’s
maintenance work. The system’s performance is not sensitive
to the duration of the think time for such compute loads.
Moreover, as shown in Figure 10, with large enough size of the
heap nodes and more maintenance work, even the execution
of medium-grained applications can also be tolerated.

Figure 11 shows the duration of the think time is significant
to the absolute speedup. As discussed above, the execution
time of SeqHeap increases with the increasing duration of the
think time while the execution time of PPQ does not. Hence
more speedup can be achieved as the duration of the think
time increases. Figure 12 indicates that the absolute speedup
we can achieve rises with the increasing size of the parallel
heap node. This is reasonable because wider heap node can
enhance the performance of PPQ while SeqHeap nodes can
contain only one item.

Fig. 13: The performance comparison with multicore-based
parallel heap implementation with varying node sizes. (t =
6000; s = 222; n = 226)

Finally, the performance difference of GPGPUs based and
multicores based implementations over varying node sizes
is displayed in Figure 13. The multicore pthread-based im-
plementation of a parallel heap [29] is based on bus-based

shared memory implementation in [30], and can achieve better
performance for medium grained applications. However, both
of these implementations have some drawbacks. Due to the
hardware restriction, the number of available processors is
limited. Therefore, only one processor is assigned to deal with
the delete or insert operation for one level of the parallel
heap even though there is a lot of parallelism that we can
exploit. That partly explains why the CUDA implementation
has a better performance than the multi-core implementation,
especially when the size of the heap node is large.

VI. CONCLUSION

In this paper, we discuss the characteristic of many-core
architectures and design a priority queue implementation that
can take that into consideration. We described the system de-
sign and implementation of an efficiently implemented parallel
heap. Experiments have shown that the larger a heap node
is (the more concurrency the priority-queue-based application
exhibits), the more efficient the system becomes. A good
speedup can be achieved with large heap nodes. Experimental
result also implies that the overall performance of the system is
oblivious to the finer compute grain of different applications.
In particular, fine-grained applications, which typically face
serious bottleneck accessing a shared priority queue are well
parallelized for the operational range of parameters studied.
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