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Abstract—Overlay processing of two or more thematic layers of
Geoscience polygonal data is a frequently employed fundamental
operation. As opposed to raster data, polygonal data overlaying
is irregular and both computation and data intensive. Existing
parallelizations have exclusively been over traditional hardware
platforms. This work presents the first Geographic Information
System (GIS) for overlay processing over GPGPU platforms. This
work also has other firsts: To enable efficient identification of
the potentially intersecting set of polygons across two input GIS
layers, we show how to construct a parallel R-Tree on CUDA
architecture and how to efficiently search over it concurrently
for thousands of bounding boxes. This involved employing space
filling curves for bottom-up construction of R-Tree and non-
trivial query bundling and CUDA shared-memory (as opposed
to global memory) management for concurrent search. A complex
coordination between CPU and GPU was needed to manage
dynamic memory allocation for R-Tree construction, search, and
for the variable number and size of individual output polygons.
We present detailed algorithms and how these were engineered
for CUDA . Our experiments also demonstrate good speedups
over nVidia’s CUDA 1.x and Fermi architectures.

I. INTRODUCTION

In Geographic Information System (GIS), geographic fea-
tures are normally captured by a specific theme and thus can be
organized as a series of thematic layer. To analyze the spatial
relationships between sets of geographic features within the
same spatial scope, all types of geographic features in layered
spatial data-sets are overlaid, which is one of the generic
functions in GIS. GIS vector data overlay processing is time-
consuming, and in many cases time-sensitive. For emergency
response in the US, for example, disaster-based consequence
modeling is predominantly performed using HAZUS-MH, a
FEMA-developed application that integrates current scientific
and engineering disaster modeling knowledge with inventory
data in a GIS framework [1]. Depending on the extent of
the hazard coverage, datasets used by HAZUS-MH have the
potential to become very large, and often beyond the capacity
of standard desktops for comprehensive analysis, and it may
take several hours to obtain the analytical results.

A parallel system for vector overlay processing is necessary
due to its tremendous computation. Although there are some
background literatures on parallel/distributed algorithms for
vector overlay computation, very little of implementation
projects has been done even on traditional parallel/distributed
machines. With the emergence of GPGPU (General Purpose
Graphics Processing Unit), a powerful computing platform is

readily available to scientists and engineers. However, no vec-
tor overlay applications on GPGPUs have been ever reported.
The SIMT architecture and memory hierarchy on GPGPUs
make most of parallel overlay algorithms hard to port, and
even though the parallel algorithm can be ported to GPGPUs,
the performance is not satisfactory. The motivation of our
framework is to provide a complete and efficient solution for
vector overlay processing on GPGPUs, and enable other vector
overlay related applications on GPGPUs.

The paper’s organization is as follows: Section II briefly re-
views the related work. After overviewing the framework and
briefly introducing its components in Section III, design and
implementation details of important components are present
in Section IV, V and VI. In Section VII, comprehensive
experiments conducted to evaluate the system performance are
described. We offer some conclusions and future roadmap in
Section VIII.

II. RELATE WORK

A. Nvidia GPGPUs and CUDA

Modern Nvidia GPGPUs are fully programmable graphic
processing units. A GPGPU consists of an array of parallel
processors which are often referred to as streaming multi-
processors (SM). For example, in Nvidia’s 480 GTX chip,
a single SM consists of 32 scalar processors with each scalar
processor equipped with certain amounts of registers. Each
SM also has 48 KB on-chip memory which has lower access
latency and higher bandwidth compared to the global memory
which is accessible to every SM, and has larger size. The
SMs employ a SIMT (Single Instruction Multiple Thread)
architecture. A group of 32 threads called a warp is the
minimum execution unit. Once scheduled on a SM, the threads
in a warp share the same instruction and can execute in a fairly
synchronous fashion.

CUDA (Compute Unified Device Architecture) is a parallel
computing architecture developed for parallel processing and
enables the programmers to access to the instruction sets and
memory in the Nvidia GPGPUs. A typical CUDA program is
organized into host programs and one or more parallel kernel
programs. The host programs are executed on CPU while the
parallel kernel programs run on GPGPUs.

There are some performance considerations while program-
ming using CUDA. The first one is the number of threads
spawned in a CUDA program. When the instructions executed
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by the threads in a warp must wait for a long-latency operation
such as the global memory read, other warps are scheduled to
be executed. The mechanism of tolerating the latency of expen-
sive operations using work from other warps is often referred
to as latency hiding. The mechanism can work due to the
fact that the thread management in GPGPUs is implemented
in hardware and is extremely efficient. Therefore, a CUDA
program should be designed to spawn as many threads as
possible so that enough threads are available to hide the latency
of expensive operations. The second consideration is the on-
chip shared memory provided by the SM. Considering that
the shared memory is much faster than the global memory but
smaller, it is advantageous if a CUDA program can partition
the data in the global memory into pieces that can fit into the
shared memory, load these pieces into the shared memory one
by one, process them, and then write the results back to the
global memory.

B. R-tree construction

R-tree is an important data structures for handling spatial
data. It can be used, for example, for range query which
retrieve all records whose attributes represent a d-dimensional
point located in a given d-dimensional query box. A R-tree
node contains certain number of index entries, each of which
consists of a MBR (Minimal Bounding Rectangle) and a
pointer to spatial objects if it is a leaf node or a pointer
to its child node if it is a non-leaf node. An MBR of a
two- dimensionalspatial object can be represented by its co-
ordinates of top-left corner and bottom-right corner.

In the seminal R-tree paper [2], a R-tree is built by inserting
new items iteratively as they arrive. Each insert operation
firstly needs to choose a path in accordance with certain R-
tree rules and go down to the R-tree leaf-level along this path.
Then the new item is added to a R-tree leaf node. If the R-
tree leaf node does not have enough space for the new item,
it will be spilt into two nodes which will insert a new item
into its parent node. Such change might recursively propagate
upward along the same path till the root node. If the root node
is full, it will be split into two nodes, and a new root node
and a new level will be created. To optimize R-tree’s search
performance, two goals are considered during the construction
of R-tree. The first goal is to minimize the area covered by
a MBR. The second goal is to minimize the overlap between
MBRs. Some R-tree variations, such as R* tree [3], and Hilbert
R-tree [4], are designed towards these two goals by employing
another heuristic-based splitting algorithms. R+ tree, another
R-tree variation clips to-be-inserted rectangle-bounded spatial
objects into two and avoid possible overlay between MBRs
on the same level. Yet these R-tree construction methods are
inherently sequential because these insert operations need to
compete to access some R-tree nodess, and the split operation
may require the locking of the whole R-tree and prevent
concurrent insertions.

Concurrent construction and search over R-tree is an in-
teresting research problem. Some research has been done on
concurrent R-tree on multi-core architecture [5]–[8] and dis-
tributed systems [9]–[11]. The basic idea for concurrent R-tree

on multi-core architecture is that with the help of concurrent
control techniques such as lock coupling [6], linking [5] and
retrying [12], certain insertion, deletion or search operations
can be performed concurrently. Thus the construction of R-tree
and its search operation can be accelerated. On the other hand,
R-tree on distributed systems aim to improve R-tree’s scalabil-
ity by de-clustering the R-tree nodes on independent computer
nodes. Unfortunately, these concurrent R-tree construction and
search schemes are not well suited for GPUPU due to the
lack of efficient computer locking implementations on GPGPU
and GPGPUs’ SIMT architecture. The more common way for
building R-tree on GPGPU is to built a R-tree on CPU and
then copy it to global memory.

In case of analytical application in which all of new items
are available a priori, R-tree can also be built by packing
techniques. Existing R-tree packing can be classified into
two categories: bottom-up packing [13]–[15] and top-down
packing [16], [17]. As their names imply, bottom-up packing
builds a R-tree from leaf-level to root-level by merging while
top-down packing packs a R-tree in a top-down fashion by
spliting. These R-tree packing methods motivated our parallel
R-tree construction on GPGPU.

Let us suppose we have n spatial objects in a 2-D plane.
Let m be the maximum number of MBR entries in an R-
tree node and k be the minimum number of MBR entries per
node. Then, the number of levels at maximum will be l =
dlogkne . Since the number of MBRs per node is bounded,
the number of nodes at a given level i can be computed as
b n
kl−i c assuming root node is at level 0. For example, lets say,

we need to construct an R-tree from 100 spatial objects that
are approximated by their corresponding minimum bounding
rectangles. Let the maximum number of MBR entries in an R-
tree node to be 5 and minimum number of entries per node be
3. As such there will be ceiling blog3 100c levels. In a bottom
up construction approach, the leaf level will be constructed
first which is followed by the construction of subsequent non-
leaf levels. In this example, the leaf level consists of 100
MBRs. The number of R-tree nodes in the immediate non-
leaf level can be calculated as b100/3c which is equal to 33.
Since there are 33 nodes, each of the first 32 nodes will have 3
children MBRs except the last one which will have 4 children
MBRs. Similarly, the preceding non-leaf level will have 11
(33/3) nodes. Similarly, the number of nodes in the remaining
levels can be calculated.

C. Spatial Search

One of R-tree’s functionalities is to support spatial search.
Other data structures that can support spatial search include
extended K-D-tree [18] and multi-layer grid file [19]. The
research of spatial search on GPGPU is a new research
area where there are many potential research problems to
be addressed. In [20], the author introduces a parallel R-
tree search algorithm on CUDA. But the algorithm has some
drawbacks. First, one important assumptions in the search
algorithm is that the whole R-tree and another two helper
tables can be contained in the shared memory. But this
assumption is not practical since the size of GPU’s shared
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memory is very limited, and it is almost impossible to contain
a R-tree composed of real data. Second, the algorithm requires
a lot of unnecessary work. The time complexity of the search
algorithm is n ∗ logn, where n is the number of r-tree nodes
and logn is the number of r-tree levels. Third, the algorithm
is designed for one search operation rather than batch queries,
and does not well fit into GPGPU’s architecture. [21] is
another paper aiming to spatial search on GPGPU. The basic
idea of the algorithm for spatial data search in this paper
is to scan every spatial object, and compare its bounding
box with the query region. Therefore time complexity for a
search operation is O(n), which is not good comparing to other
O(logn) search operation by R-tree and other methods. The
author use one bit as a flag to indicate if a spatial object is
within the query region or not, aiming to reduce the size of
the output. In other words, a byte with eight bits is used as
indicators for eight spatial objects. However, multiple threads
might write their results to the same byte of the result flag set
array, and cause synchronization problems.

D. Parallel spatial overlay operations

Spatial vector data processing routines are widely used in
geospatial analysis. There is only a little research reported in
literature on high volume vector-vector or vector-raster overlay
processing [?]. Since spatial overlay processing depends on
the implementations of suboptimal algorithms [22]–[24], the
processing costs can vary significantly based on number, size,
and geometric complexity of the features being processed [?].
There has been extensive research in computational geometry
that addressed scalability and parallel or out-of-core compu-
tation [25], [26]. Nevertheless, the application of this research
in mainstream GIS has been limited [23], [24]. Some research
exists for parallel implementations of vector analysis, showing
gains in performance over sequential techniques [27]–[29] on
classic parallel architectures and models, but none on the
modern platforms such as clouds and GPGPUs.

1) Crayons system for spatial overlay operations: With the
Crayons system, we have introduced the end-to-end parallel
spatial overlay processing over vector data, for the first time.
Our goal is to make Crayons available at all possible platforms,
and eventually on hybrid and/or heterogenous architectures
so that the GIS scientists can leverage the best of our work
without any need for system upgrade. In addition to our
implementation of Crayons system on GPGPUs, we have
already implemented the Crayons system on a variety of other
platforms, such as Microsoft’s Azure cloud platform [?], [?],
a Linux cluster [?] using message passing interface (MPI),
and the work is under progress on porting it using Hadoop.
Our results for each and every platform have been promising
when compared with the state-of-the-art commercial overlay
processing systems.

III. AN OVERVIEW OF THE FRAMEWORK

As a CUDA-based application, our framework heavily relies
on efficient collaboration of CPU and GPU. Considerable
effort is spent on determining the assignment of tasks on CPU
or GPGPU and therefore the storage location of related data

Algorithm 1 Create intersection graph by sorting [30]

Input: So: overlay polygons; Sb: base polygons
Output: Intersection graph;

1: procedure CREATEINTERSGRAPH A
2: Sort So based on X co-ordinates of bounding boxes in

parallel
3: parfor each base polygon Bi in set Sb do
4: Find Sx ⊂ So such that Bi intersects with all
5: elements of Sx over X co-ordinate using binary

search and sorting.
6: for each overlay polygon Oj in Sx do
7: if Bi intersects Oj over Y co-ordinate then
8: Create Link between Oj and Bi

9: end if
10: end for
11: end parfor
12: end procedure

Algorithm 2 Create intersection graph by R-tree [2]

Input: So: overlay polygons; Sb: base polygons
Output: Intersection graph;

1: procedure CREATEINTERSGRAPH B
2: Create a R-tree of So in parallel
3: parfor each base polygon Bi in set Sb do
4: Find Sx ⊂ So such that Bi intersects with all
5: elements of Sx over X and Y co-ordinate by

searching on the R-tree.
6: for each overlay polygon Oj in Sx do
7: Create Link between Oj and Bi

8: end for
9: end parfor

10: end procedure

structures when designing the framework. In general, GPU is
well suited to parallel tasks while CPU is designed to run
sequential or control tasks. CPU is responsible for controlling
the program flow, and for coordinating the host and kernel
functions to form a complete application. For our GIS overlay
processing framework, there are basically two tasks. One is to
identify each pair of potentially intersecting polygons and the
other is to perform GIS overlay operations on each of these
pairs. Obviously the latter task can be easily parallelized and
should be executed on GPGPU side. The first task, however,
is worthy of more discussion. On one hand, the sorting-based
algorithm (Algorithm 1) for this task can be readily executed
in parallel, but its cost is O(nlog2n). On the other hand,
the R-tree based algorithm (Algorithm 2) has a better cost
of O(logn). However, it is tricky to parallelize this algorithm
and there are no existing CUDA implementation.

Algorithm 1 and 2 are two alternative algorithms to create
an intersection graph. The sequential time complexity of
Algorithm 1 is O(n2 ∗ logn) while Algorithm 2 have time
complexity of O(n∗ logn). Based on these comparison, Algo-
rithm 2 is employed although R-tree construction algorithms
on many-core architecture have not been reported. Figure 1
is the architecture of the framework. The framework consists
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Fig. 1: Architecture of the framewok

of three major components: components for parallel R-tree
construction, parallel R-tree search and polygon clipping.
Firstly, a CPU program reads GIS map data, i.e base polygons
and overlay polygons from GML files or shape files, and
transfers these data from CPU to GPGPU. Then a concurrent
R-tree is constructed on GPU based on overlay polygons.
For each base polygon, we will conduct a concurrent R-tree
search over these overlay polygons, and find out the overlay
polygons that will potentially intersect with the given base
polygon. We identify a pair of such base polygon and overlay
polygon as a task. Finally, for each task we run a classic
overlay algorithm and calculate the output polygons. These
output polygons are transferred back to CPU and written to
GML files or shape files. We now describe our key contribution
on how to construct a R-Tree in parallel, followed by how to
search into it concurrently.

IV. CONCURRENT R-TREE CONSTRUCTION

In a R-tree, the ith MBR of a non-leaf node is the union of
all MBRs of the node’s i child. The union of MBRs is done
in each node by computing the minimum bounding rectangle
that spatially contains its children. Since, we know the left
top and right bottom coordinates of each child, we can use
a naive sequential method to merge children MBRs in which
we take two children MBRs at a time and replace it by a
smallest rectangle which spatially contains both of them and
we repeat this step for all the children. In other words, the
construction of parent nodes relies on that of child nodes. This
dependence determines that the parallelism we can exploit is
on the construction of R-tree nodes on the same R-tree level.
For example, Figure 3 is a simple two-level R-tree in which
MBR A, B, C contains MBR D, E, F, G, MBR H, I, J, K
and MBR L, M, N, respectively, and Nodes R1, R2, R3 need
to built prior to node R0. The concurrent R-tree construction
algorithm we present in this paper is a bottom-up construction,
building a R-tree from leaf-level nodes to root node.

One of our considerations for building a R-tree is the quality
of the resulting R-tree. As discussed in the above section, to
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Fig. 2: A two-level R-tree

improve R-tree search performance, it is crucial to minimize
the area covered by MBRs and the overlap between MBRs.
The basic idea in our R-tree construction is based on the
heuristic that if R-tree can be built by grouping spatially
neighboring MBRs, the area of resulting MBRs and overlap
between these MBRs can be greatly minimized, and a R-tree
with good search performance can be built. In mathematical
analysis, a space-filling curve is a curve whose range contains
an D-dimensional hypercube. A one-to-one relationship can
be developed between every point in a space-filling curve
and every hypercube in D-dimension space. In other words, a
space-filling curve can be used to “linearize” a D-dimension
space. Considering the locality property of the space-filling
curve, we can determine the neighborhood of a D-dimensional
hypercube by its corresponding point in the space-filling curve.
If we consider a MBR as a D-dimension point or a D-
dimensional hypercube, the space-filling curve is well suited
for identifying the neighboring MBRs.

The R-tree in global memory is stored in array-based
structures instead of traditional pointer-based structures in
order to benefit from GPGPUs’ characteristics such as global
memory coalescing. As shown in Figure 3, we have four arrays
left, right, bottom, top for collecting all of the MBRs in either
leaf nodes or non-leaf nodes. These MBRs are arranged in the
order of their enclosing nodes. We also designed two array
start, end to record the starting index and ending index of
MBRs of each R-tree node. For the R-tree in Figure3, MBRs
A–N are stored in arrays left, right, bottom and top. The ith
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Algorithm 3 Space-filling Curve Based R-tree Construction

Input: Filename;
Output: R-tree;

1: procedure CONCURRENTCONSTRUCTION(Filename)
2: Read data objects’ bounding boxes from a file.
3: Copy these bounding boxes to global memory
4: Compute the number of MBRs for each R-tree level.
5: parfor i = 1→ num1 do . num1 is the num1 of

bounding boxes
6: Compute the ith bounding box’s Z-order value.
7: end parfor
8: Sort these bounding boxes on their Z-order in parallel.
9: parfor i = 1→ num2 do . num2 is the num of

R-tree levels
10: Compute the MBRs of R-tree nodes in the ith

level.
11: end parfor
12: end procedure

element in the start, end array represents the ith R-tree node.
For example, the second elements in the start, end array is 4
and 7, which indicates that the R-tree node R2 contains the
4th to the 7th MBRs.

Besides, we have two arrays on CPU side to facilitate the
R-tree construction. These two arrays are used to store the
number of R-tree nodes in each R-tree level.

Rtree GPU Structure

double left[numOfRects+numOfNodes];

double right[numOfRects+numOfNodes];

double bottom[numOfRects+numOfNodes];

double top[numOfRects+numOfNodes];

int start[numOfNodes];

int end[numOfNodes];

Rtree GPU Structure

int num[numOfLevels];

int prefix[numOfLevels];
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Fig. 3: Data structures for R-tree on CUDA

Rtree GPU Structure

double left[numOfRects+numOfNodes];

double right[numOfRects+numOfNodes];

double bottom[numOfRects+numOfNodes];

double top[numOfRects+numOfNodes];

int start[numOfNodes];

int end[numOfNodes];

Rtree GPU Structure

int num[numOfLevels];

int prefix[numOfLevels];
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Fig. 4: Data structures for the sample R-tree

Algorithm 3 shows the space-filling curve based R-tree

Algorithm 4 Sequential R-tree search algorithm

Input: A query rectangle R: Rect; A R-tree node T : Rnode;
Output: Rectangle objects: an array of Rectangle.

1: procedure SEQSEARCH(R, T )
2: if T.ifLeaf=false then
3: for i = 1→ T.numOfRects do
4: if T.rects[i] overlaps with R then
5: SEQSEARCH(R, T.children[i])
6: end if
7: end for
8: else
9: for i = 1→ T.numOfRects do

10: if T.rects[i] overlaps with R then
11: Output T.rects[i]
12: end if
13: end for
14: end if
15: end procedure

construction. The algorithm first determines the number of R-
tree levels and the number of MBRs in each R-tree level, which
in turn determine the number of kernel calls the algorithm
will then invoke. Then the algorithm reads bounding boxes of
polygons, and calculate the Z-order value (or morton number)
for each bounding box in parallel. The technique for efficiently
calculating morton number is described in [31]. Next, all of
bounding boxes are sorted in parallel on their morton number.
Once done, the algorithm starts to built the R-tree layer by
layer.

V. PARALLEL R-TREE SEARCH

Tree based structures can be traversed either in the breadth-
first manner or the depth-first manner. The sequential search
algorithm for R-Tree shown in Algorithm 4 and Figure 5 starts
the traversal at the root and in a depth-first manner visits all
the leaf nodes during traversing. The result of traversal is a list
of those spatial objects that have MBRs that can overlap with
the search rectangle specified as input. Since the route of the
algorithm is data-dependent and hence sequential, parallelizing
the search algorithm is a non-trivial task.

Rnode Structure

Rect rects[numOfRects ];

Rnode * children[numOfChildren];

boolean ifLeaf;

Rect Structure

double left;

double right;

double top;

double right;

1

Fig. 5: Data structures for the sequential R-tree.

In addition to the irregular computations for search, the
architectural characterisitcs of GPGPUs increase the complex-
ities of the parallel R-Tree search algorithm. Based on the size
of the input search rectangle, in the worst case, R-Tree might
return all of the records as result. However, the resources such
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Algorithm 5 Parallel R-tree search algorithm

Input: Query rectangles Q[numOfQueries]: Rect; R-tree
root node R: Rtree GPU;

Output: An array of Rect type objects.

1: procedure PARALLELSEARCH(Q, numOfQuerys, R)
2: PARALLELSEARCHA(Q,numOfQuerys,R)
3: for i = 1→ 2 do
4: PARALLELSEARCHB(Rect, numOfQuerys, T )
5: end for
6: for i = 3→ numOfLevels do
7: PARALLELSEARCHC(Rect, numOfQuerys, T )
8: end for
9: end procedure

as device’s global memory are limited and thus cannot be
reserved for the worst case. Dynamic memory allocation is
the traditional way out of this problem but for GPGPUs the
dynamic memory allocation process adds significant overhead.

In order to introduce parallelism while tolerating the over-
heads associated with parallelizing the search process in the
R-tree search algorithm, instead of a single query request
multiple requests are executed at any given time. Considering
the dependency between a R-tree node and its children nodes, a
breadth-first search is preferred. At each level multiple threads
search for the winning routes that are yet to be traversed at the
levels below. However, threads need to synchronize after
finishing the process at current level and before moving
to the next level. Considering that our search algorithm
is carried on each level of the R-tree, the memory usage
for the next level of the R-tree thus can be bounded by
computing the search results of current level.

In Nvidia GPGPUs, the access to data in shared memory
is about 10 times faster than that in global memory. It will
greatly boost performance if we can refine the data access
pattern and cache frequently used data in shared memory. For
the upper levels of a R-tree, it is quite possible that a R-tree
node will be accessed by quite a few queries. So it is worthy to
load a R-tree node to shared memory, cluster the queries that
will be performed on the same node and concurrently perform
these queries. However, for the lower levels of a R-tree where
the number of R-tree nodes become large, loading the R-tree
node to shared memory does not necessarily improve search
performance. Based on these analysis, we design three search
routines aiming to root level, the first two level and the other
levels of R-trees, respectively. Algorithm 5 is the main routine
of our parallel search algorithm, in which Algorithm 6, 7, 8
will be executed sequentially.

Algorithm 6 is designed for the query on the root level. It
first loads the MBRs in the root node into shared memory,
then test the query rectangles with each of these MBRs. If
one query rectangle overlaps with any of these MBRs, the
index of the query rectangle and MBRs will be wrapped and
stored in a Tmp Output structure. (See Figure 6) The output of
Algorithm 6 is input to Algorithm 7 in which the Tmp Output
objects are sorted on the query index, and are merged into

Algorithm 6 Parallel R-tree search algorithm A

Input: Query rectangles Q[numOfQueries]: Rect; A R-tree
node R0: Rtree GPU;

Output: An array of Tmp Output objects.

1: procedure PARALLELSEARCHA(Q, R)
2: Load R into shared memory
3: parfor i = 1→ numOfQueries in parallel do
4: parfor j = 1 → (end[R0] − start[R0] + 1) in

parallel do
5: if jth MBR overlaps with Rect[i] then
6: Output Tmp Output(i,j);
7: end if
8: end parfor
9: end parfor

10: end procedure

Algorithm 7 Parallel R-tree search algorithm B

Input: An array of Tmp Output objects, arr1; A R-tree node
R: Rtree GPU

Output: An array of Tmp Output objects, arr2;

1: procedure PARALLELSEARCHB(arr1, arr2, R)
2: Sort arr1 on the query index in parallel
3: Combine elements with the same query index in arr1

into one Tmp Cluster Object.
4: parfor each Tmp Cluster object do
5: index← Tmp Cluster.indexOfRnodes
6: Load R[index] into shared memory
7: parfor i = 1→ numOfQueries in parallel do
8: parfor j = 1 → (end[R[index]] −

start[R[index]] + 1) in parallel do
9: if jth MBR overlaps with Rect[i] then

10: Output Tmp Output(i,j);
11: end if
12: end parfor
13: end parfor
14: end parfor
15: end procedure

Tmp Cluster objects. The R-tree node specified in each of
Tmp cluster object will be loaded into shared memory, and
be tested with each query. In Algorithm 8, the query specified
in each Tmp Output object is tested with the R-tree node in
the same Tmp Output object.

Tmp Output Structure

int indexOfQueries;

int indexOfRnodes;

Tmp Cluster Structure

int indexOfRnodes;

int start;

int end;

1

Fig. 6: Data structures for the parallel search.
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Algorithm 8 Parallel R-tree search algorithm C

Input: An array of Tmp Output objects, arr1; A R-tree node
R: Rtree GPU

Output: An array of Tmp Output objects, arr2;

1: procedure PARALLELSEARCHC(arr1, arr2, R)
2: parfor each element in arr1 do
3: index← arr1.indexOfRnodes
4: parfor i = 1 → (end[R[index]] −

start[R[index]] + 1) in parallel do
5: if ith MBR overlaps with Rect[i] then
6: Output Tmp Output(i,j);
7: end if
8: end parfor
9: end parfor

10: end procedure

VI. POLYGON CLIPPER

Another important component in our framework is the poly-
gon clipper module that takes a pair of polygons and the over-
lay operation as input, overlays them based on the operation,
and finally returns a set of resulting polygons. The polygon
clipping algorithm being employed by the polygon clipper is
based on the algorithm by Vatti [32]. Vatti’s algorithm can
handle general as well as complex polygons such as concave
and self-intersecting polygons. The gist of Vatti’s algorithm is
to scan every vertex in a set of polygons, starting at the bottom
to the top, and compute potential intersection points between
the sets of base polygons and overlay polygons. Meanwhile,
the scanned vertices and identified intersection points are
determined based on the fact that they will contribute to output
polygons according to their relative positions. Contributing
vertices and intersection points are connected together to form
the output polygons. The time complexity of this algorithm
depends on the number of total vertices in the sets of base
polygons and overlay polygons. Since the algorithm relies on
bottom-up scanning, it is sequential in nature. General Polygon
Clipper library (GPC library) [33] is an open source software
written in C that implements and extends Vatti’s algorithm. It
is employed as the fundamental processing component in the
polygon clipper component.

Polygon Structure

int num contours;

int *hole;

Contour *contours;

Contour Structure

int num vertices;

double bbox[4];

Vertex *vertexs;

Vertex Structure

double x;

double y;

1

Fig. 7: Data structures used in GPC library.

Figure 7 shows the data structures for the polygons used
as the interfaces for the polygon clipper component. These
data structures are organized hierarchically, with each polygon
containing a set of contours and each contour containing a
set of vertices. Notice that the input polygons usually contain
only one contour. Table I lists important functions in GPC

Function name Description
gpc polygon clip Main function
build lmt Build a local minima list to store

bounds for every polygon
insert bound Insert bounds to the local minima list
add to sbtree Insert edges to the scan-beam tree
build sbt Build a scan-beam table
add edge to aet Add edges starting at the local mini-

mum to the active edge list
build intersection table Build intersection table for the current

scan-beam

TABLE I: Important functions in GPC library

library. While GPC library is well designed and carefully
documented, considerable effort was required to port it to
CUDA architecture. GPC library is written in C language, so
the functions in the library have to be reengineered to CUDA
functions to execute them on CUDA architecture. NVidia
GPUs with Compute capability of 1.x do not support recursion,
while functions such as add to sbtree(), add edge to aet(),
build sbt() employ recursion heavily. We had to rewrite those
functions to convert recursion into multiple iterative calls.
Moreover, we do not have the luxury of memory allocation
routines such as malloc, calloc, and realloc in CUDA. Al-
though in-kernel dynamic memory allocation is supported in
Fermi-based GPUS, the built-in memory allocator is not effi-
cient enough for applications that invoke memory allocation
routines frequently. After comparing a few parallel memory
allocators, we chose Xmalloc [34]—an in-kernel dynamic
memory allocator for GPUs–for our framework. Xmalloc em-
ploys lock-free algorithms and hierarchical cache-like buffer.
Xmalloc scales well with growth in both the number of
processors and the number of vector units in each SIMD
processor.

VII. EXPERIMENT

Performance with different data set, and comparison with
other implementation, such as cloud platform implementation
and MPI implementation.

VIII. CONCLUSION
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