
1

Cloud Computing for Fundamental Spatial
Operations on Polygonal GIS Data
Dinesh Agarwal, Satish Puri, Xi He, and Sushil K. Prasad1

Department of Computer Science
Georgia State University

Atlanta - 30303, USA
Email: {dagarwal2, spuri2, xhe8}@student.gsu.edu, sprasad@gsu.edu

Abstract—Efficient end-to-end parallel/distributed pro-
cessing of polygon-based spatial data (also known as
vector-based data) has been a long-standing research ques-
tion in GIS community. The irregular and data intensive
nature of the underlying computation has impeded the ex-
ploratory research in this space. We have created an open
architecture based system named Crayons for Azure cloud
platform using state-of-the-art techniques. The design and
development of Crayons system is an engineering feat both
due to (i) the emerging nature of the Azure cloud platform
which lacks traditional support for parallel processing
and (ii) the tedious exploration of design space for right
techniques for parallelizing various workflow components
including file I/O, partitioning, task creation, and load
balancing. Crayons is an open-source system available
for both download and online access, to foster academic
activities. We believe Crayons to be the first distributed GIS
system over cloud capable of end-to-end spatial overlay
analysis. We demonstrate how Azure platform’s storage,
communication, and computation mechanisms can support
high performance application (HPC) development. Crayons
scales well for sufficiently large data sets, achieving end-to-
end relative speedup of over 40-fold employing 100 Azure
processors. For smaller, more irregular workload, it still
yields over 10-fold speedup.

I. INTRODUCTION

Cloud computing is emerging as a promising
platform for compute and data intensive scientific
applications. Researchers in Geographic information
systems and science (GIS) have always perceived
large scale vector-data computation as a challenge
due to the underlying data intensive and irregular
computational nature - in contrast to raster data
which is regular and highly parallelizable. When

1This work is partially supported by NSF/Microsoft Eager grant
CCF 1048200.

Source Example Type File Size

US Census [3]
Block Centroids 705 MB
Block Polygons 108 MB
Blockgroup Polygons 14 MB

GADoT [4] Roads 130 MB

USGS [5] National Hydrography Data set 13.1 GB
National Landcover Data set 3-28 GB

JPL [6] Landsat TM 4 TB
Open Topography [7] LIDAR 0.1-1 TB

TABLE I: Example GIS data sets and typical sizes

large volumes of vector data are deployed for spa-
tial analysis and overlay computation, it is a time
consuming task, which in many cases is also time
sensitive, such as for hurricane path prediction [1].

Table I shows some example data sets with typical
file sizes. Depending on the resolution and geo-
graphic extents, data sets can get extremely large
[2].

Comprehensive analysis of such data sometimes
is not at all possible by employing a standard
desktop system (the state-of-art), and even if it is, it
usually takes hours to days before the application
can obtain any analytical results. Even for non-
emergency response applications, spatial data pro-
cessing routines run for extended periods of time.

Why Cloud? For a wide range of large scale dis-
tributed computing applications from Geosciences,
the demand for resources varies significantly during
the course of execution. While a set of dedicated re-
sources for such applications could result in under-
utilization most often, at other times the system
could perform better by utilizing more resources
than available. Therefore, the emerging cloud plat-
forms, such as Microsoft’s Azure have the promise
to be the platform of choice for such GIS applica-



2

tions.
Cloud computing promises scientists with a new

infrastructure and paradigm for large scale dis-
tributed computing [8]. There have been some
initial work to understand the pros and cons of
this new framework [8]–[10]. However, only a
few Geoscience-related projects have been initi-
ated on the cloud platform. Most relevant among
these include ModisAzure project for download, re-
projection, and reduction of satellite imagery [8],
[10], [11], and Smart Sensors and Data Fusion
applications project for ocean observation [12].

Contributions: We have engineered Crayons2

system over Azure cloud with a parallel, open
software architecture for polygon overlay analysis.
We believe Crayons to be the first cloud-based
system for end-to-end spatial overlay processing on
vector data. Our specific technical contributions are
as follows:

• Engineering an end-to-end spatial overlay sys-
tem by way of designing and implementing
three versions: (i) Centralized Dynamic Load
Balancing, (ii) Distributed Static Load Bal-
ancing, and (iii) Distributed Dynamic Load
Balancing.

• Open architecture of Crayons for interoperabil-
ity with any third party domain code (GPC
library) for sequential execution of primitive
overlay computation over two polygons.

• End-to-end relative speedup of more than 40x,
using input GML files with comparatively uni-
form load distribution, and more than 10x
using input GML files with skewed load dis-
tribution, using 100 Azure processors.

The rest of this paper is organized as follows:
Section II describes our parallel Azure framework
and its three flavors. Our experimental results are
presented in Section III. Section IV concludes this
paper with comments on future work.

II. ARCHITECTURE OF CRAYONS SYSTEM

We have spent considerable effort analyzing the
still-emerging Azure platform’s nitty-gritty to gain
insights into Azure framework, parallel reading and
writing from and to cloud storage3, and load balanc-

2For Azure code, extended manuscripts, and rigorous experimental
data, see [13]

3AzureBench suite has detailed benchmarking of the blob, queue,
and table storage mechanisms [14].

ing. In the process, we created three different archi-
tectures for Crayons to thoroughly test the Azure
platform’s design artifacts and to carve out path
for future development. Due to space constraints,
we will only discuss the Crayons’ architecture with
distributed dynamic load balancing, our best per-
forming version, in detail. However, we will briefly
discuss the differences with respect to other two
versions.

A. Crayons Architecture with Distributed Dynamic
Load Balancing

Figure 1 shows the architectural diagram of
Crayons with distributed dynamic load balancing.
The entire workflow for this architecture is divided
into four steps as outlined below:

Step I. The web role presents the interface with
a list of GML files available to be processed along
with the supported operations (currently union, in-
tersection, x-or, and difference). The user selects the
GML files to be processed along with the spatial
operation to be performed on these files. The web
role puts this information as a message on the input
queue.

Algorithm 1 Algorithm to create polygon intersec-
tion graph (approach similar to [15])
INPUT: Set of Base Layer polygons Sb and Set of
Overlay Layer polygons So

OUTPUT: Intersection Graph (V ,E), where
V is set of polygons and E is edges
among polygons with intersecting bounding
boxes.

Quicksort set So based on X coordinates of
bounding boxes
for all base polygon Bi in Sb do

Find Sx ⊂ So such that Bi intersects with all
polygons in set Sx over X coordinate (binary
search over So)
Quicksort Sx on y coordinates of bounding
boxes
for each polygon Oj in Sx that Bi intersects
with in Y coordinate do
Create an edge (Bi, Oj ) in graph G
end for

end for

Step II. Worker roles continuously check the in-
put queue for new tasks. If there is a task (message)



3

Step 1

Step 4

Web role

Blob Container
Put blob

Step 2

Worker n
Worker ..

Worker 1

Step 3

Worker n
Worker ..

Worker 1

put file names get file names

pu
tb

lo
b

ID
s

get blob IDs

task completion
messagere

ad
m

es
-

sa
ge

co
un

t
flush blocks to gml file

ge
tb

lo
bs

put blobs

put blobs

Read User Selection

Commit Output File

Input Queue

Blob

Blob

Blob

Blob

Download and Parse Files

Create Intersection Graph

Partition Graph

Task Pool QueueTermination Indicator Queue

Store Output

Process task

Check For Work

Fig. 1: Crayons architecture with distributed dynamic load balancing

in the queue, the worker roles read the message,
download the input files, parse them, and create
the intersection graph to find the independent tasks.
To achieve this, Crayons finds each overlay poly-
gon that can potentially intersect with the given
base polygon and only performs spatial operation
on these tasks. As shown in Algorithm 1, this is
achieved using the coordinates of bounding boxes
generated during parsing of input files. Then each
worker role shares the tasks it creates among all the
worker roles by storing the task IDs in a common
task pool (Task Pool Queue in Figure 1).

Step III. After the workers finish task creation,
they fetch work from the task pool and process them
by invoking GPC library [16]. The advantage of this
approach is that the worker role instances can also
process the work of other worker role instances and
hence achieve decent performance even with skewed
load.

After each task is processed, the corresponding
worker role permanently deletes the message related
to this task from the task pool queue. Additionally,
each worker role puts a message on the termination
indicator queue to indicate successful processing of
the task.

Step IV. The web role keeps checking the number
of messages in the termination indicator queue to

update the user interface with the current progress of
the operation. On completion, the web role commits
the resultant blob (using API PutBlockList) and
flushes it as a persistent blob in the Blob storage.
The output blob’s URI is presented to the user for
downloading or further processing.

The Queue storage mechanism provided by Azure
platform comes handy for fault tolerance during
processing. In the event of a worker role failure to
process the task message, the message reappears in
the queue after a stipulated amount of time.

B. Other versions of Crayons
The distributed dynamic load balancing version

of Crayons is different from the other two versions
in terms of load distribution. In the centralized load
balancing version, the web role itself downloads
the files, parses them, and creates intersection graph
(Step 1 and Step 2). Rest of the process is similar to
the distributed dynamic load balancing version. The
distributed static load balancing version is different
in that the worker roles do not share their work
with other worker roles. Each worker role creates
the intersection graph for its share of base layer
polygons (statically apportioned based on worker
id) and processes its own local tasks, i.e., Step 2
and Step 3 are combined as one step.



4

III. PERFORMANCE OF CRAYONS SYSTEM

We have a maximum quota of 100 Azure cores
that we can employ for our experiments. For the
centralized version of Crayons, 1 core is used by
the user interface process, 8 cores are used by the
web role that acts as the producer and the rest 91
cores are used by the worker roles acting as the
consumers. For the sake of fair comparison, we con-
tinue to utilize a maximum of 91 cores for worker
role instances (consumers) in both distributed load
balanced versions too.

A. End-to-end Speedups

Figure 2 shows the load distribution across two
data sets used for experiments. As shown in Fig-
ure 2(a), the smaller data set has a skewed load
distribution; few base polygons have more than 10K
intersecting overlay polygons, while few others have
no intersecting overlay polygons at all. The larger
data set, shown in Figure 2(b), is comparatively
uniformly distributed.

Figure 3 shows the absolute speedup of Crayons
system for smaller, skewed data set. The baseline
sequential timing is calculated over the distributed
static version with only one worker role as this
version does not store messages in the queue and
thus avoids that overhead.

The overall end-to-end (starting from input GML
files to producing output GML files) acceleration
of Crayons system is more than 9x as shown in
Figure 3. It can be clearly seen that both of the
distributed load balanced versions scale better than
the centralized load balanced version. The reason
is the demand-supply imbalance due to only one
virtual machine working as a producer while the
number of consumers keep increasing for the cen-
tralized version.

The reason for poor absolute speedup of dis-
tributed load balanced versions is the inherent
bottlenecks prevalent in Azure platform includ-
ing simultaneous file download, contention of task
queues, and parallel access to Blob storage. Due to
these inherent bottlenecks, scaling of such systems
on Azure platform will be challenging.

B. Timing Characteristics of Crayons

Figure 4 demonstrates maximum time taken by
individual Crayons modules over small and large

(a) Smaller, skewed data set

(b) Large data set

Fig. 2: Load profile of data sets used for experi-
ments

Fig. 3: Absolute Speedup of Crayons system for
small, skewed data set

data sets on distributed dynamic load balancing
version. The reported subprocess timings represent
the time taken from first starting instance of that
subprocess at any worker to the last finishing in-
stance of that subprocess at any worker.

The smaller data set suffers from skewed data



5

(a) Small data set

(b) Large data set

Fig. 4: Execution times for subprocesses and end-
to-end speedup for smaller data set

distribution and thus the overall relative speedup
is limited to only 10x. On the other hand, for the
larger data set, the load is comparatively uniform.
Therefore, Crayons shows much better performance
for this data set. The end-to-end relative speedup of
Crayons increases to more than 40x. The individual
relative speedup for subprocess of task processing
is more than 48x, and for the subprocess of task
creation it is more than 57x.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we have documented the details of
an open-architecture-based overlay-processing sys-
tem that addresses the critical issues that have
hindered the research for an important class of data
intensive irregular applications over Azure cloud
platform. Our results are very promising showing
10 to 40 fold speedup for end-to-end processing.
The system enables experimenting with third party
overlay solutions for fundamental GIS operations

based on user preferences. An MPI version of
Crayons has also been developed [17].

We have initiated collaboration with GIS and
Health Policy researchers to employ Crayons for
domain science applications. The system enables
experimenting with third party overlay solutions for
fundamental GIS operations based on user prefer-
ences.

REFERENCES

[1] HAZUS-MH, “Hazus-MH Overview,”
http://www.fema.gov/plan/prevent/hazus/hz overview.shtm,
May 2011.

[2] OJWS, “OnEarth, JPL WMS Server,”
http://onearth.jpl.nasa.gov/, 1936.

[3] Census.gov, “US census data,” http://www.census.gov/, Decem-
ber 2011.

[4] GDOT, “Georgia department of transportation,”
http://www.dot.state.ga.us/Pages/default.aspx, 1916.

[5] USGS, “U.S. geological survey,” http://www.usgs.gov/, 1879.
[6] NASA, “Jet propulsion laboratory,” http://www.jpl.nasa.gov/,

1936. [Online]. Available: http://www.jpl.nasa.gov/
[7] Open Topography Facility, “Open topography,”

http://opentopo.sdsc.edu/gridsphere/gridsphere?cid=geonlidar.
[8] C. A. Lee, “A perspective on scientific cloud computing,” in

Proceedings of the 19th ACM International Symposium on High
Performance Distributed Computing, ser. HPDC ’10. New
York, NY, USA: ACM, 2010, pp. 451–459.

[9] G. Turcu, I. Foster, and S. Nestorov, “Reshaping text data
for efficient processing on Amazon EC2,” in Proceedings of
the 19th ACM International Symposium on High Performance
Distributed Computing, ser. HPDC ’10. New York, NY, USA:
ACM, 2010, pp. 435–444.

[10] A. Thakar and A. Szalay, “Migrating a (large) science database
to the cloud,” in Proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing, ser.
HPDC ’10. New York, NY, USA: ACM, 2010, pp. 430–434.

[11] J. Li, M. Humphrey, D. Agarwal, K. Jackson, C. van Ingen,
and Y. Ryu, “eScience in the cloud: A MODIS satellite data
reprojection and reduction pipeline in the Windows Azure
platform,” in Parallel Distributed Processing (IPDPS), 2010
IEEE International Symposium on, april 2010, pp. 1 –10.

[12] J. R. Delaney and R. S. Barga, The Fourth Paradigm: Data
Intensive Scientific Discovery. Microsoft Research,, 2009, ch.
Observing the Oceans - A 2020 Vision for Ocean Science.

[13] D. Agarwal, S. Puri, X. He, and S. K. Prasad. Crayons - a
cloud based parallel framework for GIS overlay operations.
[Online]. Available: http://cs.gsu.edu/dimos/crayons.html

[14] D. Agarwal and S. K. Prasad, “Azurebench: Benchmarking
the storage services of the azure cloud platform,” in Parallel
Distributed Processing workshops (IPDPSW), 2012 IEEE In-
ternational Symposium on, to appear, 2012.

[15] F. Wang, “A parallel intersection algorithm for vector polygon
overlay,” Computer Graphics and Applications, IEEE, vol. 13,
no. 2, pp. 74 –81, mar 1993.

[16] A. Murta, “A general polygon clipping library,”
http://www.cs.man.ac.uk/ toby/alan/software/gpc.html, 1997.

[17] D. Agarwal, S. Puri, X. He, and S. K. Prasad, “A system for GIS
polygonal overlay computation on linux cluster - an experience
and performance report,” in Parallel Distributed Processing
workshops (IPDPSW), 2012 IEEE International Symposium on,
to appear, 2012.


