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Abstract—GIS polygon-based (also know as vector-based) spa-
tial data overlay computation is much more complex than raster
data computation. Processing of polygonal spatial data files has
been a long standing research question in GIS community due to
the irregular and data intensive nature of the underlying compu-
tation. The state-of-the-art software for overlay computation in
GIS community is still desktop-based. We present a cluster-based
distributed solution for end-to-end polygon overlay processing,
modeled after our Windows Azure cloud-based Crayons system
[1]. We present the details of porting Crayons system to MPI-
based Linux cluster and show the improvements made by
employing efficient data structures such as R-trees. We present
performance report and show the scalability of our system, along
with the remaining bottlenecks. Our experimental results show
an absolute speedup of 15x for end-to-end overlay computation
employing upto 80 cores.
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I. INTRODUCTION

Scalable vector data computation has been a challenge in
Geographic Information Science and Systems (GIS). When
large volumes of data are deployed for spatial analysis and
overlay computation (see Figure 1), it is a time consuming
task, which in many cases is also time sensitive. For emergency
response in the US, for example, disaster-based consequence
modeling is predominantly performed using HAZUS-MH, a
FEMA-developed application that integrates current scientific
and engineering disaster modeling knowledge with inventory
data in a GIS framework [7]. Depending on the extent of
the hazard coverage, datasets used by HAZUS-MH have
the potential to become very large, and often beyond the
capacity of standard desktops for comprehensive analysis, and
it may take several hours to obtain the analytical results.
Although processing speed is not critical in typical non-
emergency geospatial analysis, spatial data processing routines
are computationally intensive and run for extended periods of
time. In addition, the geographic extents and resolution could
result in high volumes of input data.
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In this paper, we present a parallel system to execute
traditional polygon overlay algorithms on a Linux cluster with
InfiniBand interconnect using MPI framework.

We present the algorithm for carrying out the overlay com-
putation starting from two input GML (Geography Markup
Language) files, their parsing, employing the bounding boxes
of potentially overlapping polygons to determine the basic
overlay tasks, partitioning the tasks among processes, and
melding the resulting polygons to produce the output GML
file. We describe the software architecture of our system to
execute the algorithm and discuss the design choices and
issues. Our instrumenting of the timing characteristics of
various phases of the algorithm rigorously point out portions of
the algorithm which are easily amenable to scalable speedups
and some others which are not. The latter is primarily related
to file related i/o activities. The experiments also point out
the need for input and output GML files to be stored in
a distributed fashion (tranparent to the GIS scientists) as a
matter of representation to allow efficient parallel access and
processing.

Our specific technical contributions are as follows:

• Porting the Windows Azure cloud-based spatial overlay
system to Linux cluster using MPI

• Implementing and improving an end-to-end overlay pro-
cessing system for a distributed cluster

• An absolute speedup of over 15x using 80 cores for end-
to-end overlay computation over moderate sized GML
data files of 770 MB intersected with 64 MB file with
skewed load profile.

The rest of this paper is organized as follows: Section II
reviews the literature briefly and provides background on GIS
raster and vector data, various operations that define parallel
overlay, and R-tree and general polygon clipper (GPC) library.
Section III describes two flavors of task partitioning and load
distribution. Several key implementation related issues are
discussed in Section IV. Our experimental results and other
experiments are in V. Section VI concludes this paper.



Source Example Type Description File Size

US Census [2]
Block Centroids Block centroids for entire US 705 MB
Block Polygons 2000 Block polygons for the state of Georgia 108 MB
Blockgroup Polygons 2000 Blockgroup polygons for the state of Georgia 14 MB

GADoT [3] Roads Road centerlines for 5-county Atlanta metro 130 MB

USGS [4] National Hydrography Data set Hydrography features for entire US 13.1 GB
National Landcover Data set Landcover for entire US 3-28 GB

JPL [5] Landsat TM pan-sharpened 15m resolution 4 TB
Open Topography [6] LIDAR LIDAR point clouds 1-4 pts/sq. ft 0.1-1 TB

Fig. 1: Example GIS data sets and typical files

II. BACKGROUND AND LITERATURE

A. Data Types in GIS

In GIS the real world geographic features are prominently
represented using one of the two data formats: raster and
vector. Raster form stores the data in grids of cells with
each cell storing a single value. Raster data requires more
storage space than vector data as the representation cannot
automatically assume the inclusion of intermediate points
given the start and end points. In vector data, geographic
features are represented as geometrical shapes such as points,
lines, and polygons. Vector data is represented in GIS using
different file formats such as GML and shapefile, among
others. In our experiments, we use GML file format (XML-
based) to represent input and output GIS data.

B. Map Overlay

Map Overlay is one of the key spatial operations in GIS. It
is the process of interrelating several spatial features (points,
lines, or polygons) from multiple datasets, which creates a
new output vector dataset, visually similar to stacking several
maps of the same region together. These overlays are similar
to mathematical Venn diagram overlays. For instance, one map
of Japan representing population distribution and another map
representing the area affected by Tsunami can be overlaid to
answers queries such as “What is the optimal location for a
rescue shelter?” Clearly, it is often needed to combine two or
more maps according to logical rules called overlay operations
in GIS. A union overlay operation combines the geographic
features and attribute tables of both inputs into a single new
output. An intersection overlay operation, similarly, defines
the overlapping area and retains a set of attribute fields for
each. In case of raster data format, the operation is called grid
overlay, and, in the case of vector data format, the operation is
called polygon overlay. It should be noted here that the process
of map overlay in case of raster data is entirely different from
that of vector data and our solution deals with vector data
only. Since resulting topological features are created from two
or more existing features of the input map layers, the overlay
processing task can be time consuming and CPU intensive.

For identification of overlaying-map-features, different al-
gorithms based on uniform grid, plane sweep, Quad-tree, and
R-tree have been proposed and implemented on classic par-
allel architectures [8]–[10]. Franklin et al. [11] presented the

uniform grid technique for parallel edge-intersection detection.
Their implementation was done using Sun 4/280 workstation
and 16 processor Sequent Balance 21000. Waught et al. [12]
presented a complete algorithm for polygon overlay and the
implementation was done on Meiko Computing Surface, con-
taining T800 transputer processors using Occam programming
language. Data partitioning in [11]–[14] is done at spatial level
by superimposing a uniform grid over the input map layers.
Armstrong et al. [15] presented domain decomposition for
parallel processing of spatial problems. While a wealth of re-
search shows gains in performance over sequential techniques
[16], [17], its application in mainstream GIS software has been
limited [18], [19]. There has been very little research in high
volume vector spatial analysis [20] and the existing literature
lacks an end-to-end parallel overlay solution.

C. R-tree

R-tree is an efficient spatial data structure for rectangular
indexing of multi-dimensional data; it performs well even
with non-uniform data. R-tree data structure provides standard
functions to insert and search polygons by their bounding box
co-ordinates. We use R-tree for intersection detection among
polygons required for efficient overlay processing. Searching
for overlap in R-tree is typically an O(logmn) operation where
n is the number of nodes and m is the number of entries
in a node, although it can result in O(n) complexity in the
worst case. We use a third party library for sequential R-tree
[21] which implements Guttman’s algorithm [22] for R-tree
construction and search operation.

D. Crayons system on Azure cloud

We have earlier developed a distributed cloud-based frame-
work named Crayons [1] to execute traditional polygon over-
lay analysis algorithms on Windows Azure cloud platform.
Windows Azure platform is a computing and service platform
hosted in Microsoft data centres. Its programming paradigm
employs two types of processes called web role and worker
role for computation. For communication between web role
and worker roles, it provides queue-based messaging and for
storage it provides blobs and tables. Three load balancing
mechanisms showing excellent speedup in Crayons are dis-
cussed in the paper [1].

However, Windows Azure platform lacks support for tradi-
tional software infrastructures such as MPI and map-reduce.



Our current work generalizes Crayons by porting it to a Linux
cluster with support for MPI framework. Porting a cloud
application has its own set of challenges and we discuss some
of them in this paper. We also made improvements on top
of the Crayons’ design by incorporating R-tree - an efficient
spatial data structure. We believe that cluster based faster and
efficient end-to-end GIS solution will aid GIS community as
a whole.

E. Clipper Library

For computing map overlay over a pair of polygons, we
use the GPC library which is an implementation of polygon
overlay methods as described in [23]. The GPC library handles
polygons that are convex or concave and self-intersecting. It
also supports polygons with holes or polygons comprising of
several disjoint contours. The usage of this widely used library
shows the interoperability and accuracy of our approach for
our polygon overlay solution. GPC library supports intersec-
tion, union, difference, and X-OR. The output may take the
form of polygon outlines or tristrips. We analyze and report
intersection overlay operation throughout this project since
it is the most widely used and is a representative operation.
Nevertheless, our system can be extended to other operations
as well without any change.

III. OUR MPI-BASED SYSTEM DESIGN

We have implemented two versions of our system em-
ploying static and dynamic load balancing. The two versions
further differ in the way task creation is carried out. Our
system has a four-step workflow which consists of input file
parsing, task creation, overlay computation, and output file
creation.
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Fig. 2: Architecture with dynamic load balancing

A. Architecture with dynamic load balancing using R-tree

Figure 2 shows master-slave architectural diagram for dy-
namic load balancing version with task creation by employing
R-tree. The first step of our workflow starts with both the
master and the slave processes parsing the GML files - only

base layer for master process and both the base and overlay
layer files for slave processes. This redundancy later helps in
task creation and processing.

Once parsing is done, each slave process builds its R-
tree using the bounding boxes of the overlay layer polygons.
Master process determines the total number of base layer
polygons and dynamically partitions those polygons into small
chunks. The start and end indices of each chunk are sent to
the slave processes. Once a slave process receives the polygon
indices, the next step is to search its local R-tree for potentially
intersecting overlay layer polygons. Each slave process creates
an intersection graph where each polygon from the base layer
is connected with all of the polygons from overlay layer that
can potentially intersect with it. Algorithm 1 describes the
steps involved in creating the intersection graph based on
R-tree. Once the intersection graph has been created, each
polygon from base layer and the connected polygons from
overlay layer are stored together as a primitive overlay task
for a slave process for processing. The overlay processing itself
is carried out by invoking the built-in overlay function of the
GPC library. The output from this library is a polygon structure
that is converted to its equivalent GML representation. Once
a slave worker finishes processing its current set of tasks, it
sends a completion message to the master, who in turn sends
indices of the next chunk to be processed. Finally, when all
tasks are completed, the master process merges all the local
output files to generate the final output GML file.

Algorithm 1 R-tree based algorithm to create intersection
graph
INPUT: Set of Base Layer polygons Sb and Set of Overlay
Layer polygons So

OUTPUT: Intersection Graph (V ,E), where V is set of
polygons and E is the set of edges among polygons with
intersecting bounding boxes.

Create an R-tree R using the bounding boxes of So

for all base polygon Bi in set Sb do
for each polygon Oj in R-tree R with bounding box
intersecting with that of Bi do

Create an edge (Bi, Oj) in graph G
end for

end for

We experimented with different grain (chunk) sizes guided
by the distribution of polygons in a map layer. For non-
uniform load, grain size should be smaller to account for load
imbalance in comparison to the uniformly distributed data. The
master process can be visualized as the owner of a pool of
tasks from which it assigns tasks to slave processes. The slave
processes continuously check with the master process for new
tasks once they are done processing their individual tasks. The
master-slave communication is message-based, handled by
MPI send/receive primitives. The message size is intentionally
kept small to lower the communication overhead while the
message count (and thus the grain size) is determined by



empirical data.

B. Architecture with dynamic load balancing using sorting-
based algorithm

We used sequential R-trees for creating intersection graphs
in the previous version. As suggested in the literature [10], we
also used a different algorithm for creating intersection graph,
which is based on sorting the polygons on their bounding
boxes. In this algorithm, each slave process sorts all the
overlay polygons using the x coordinates of their bounding
boxes (first sort on left x coordinate and then over right).
Then, iteratively, for each sets of base polygons assigned by
the master to work on, each slave searches over this sorted list
of overlay polygons to create its intersection graph. Algorithm
2 has the details of the sorting-based algorithm for detecting
polygon intersection. The time taken of this intersection graph
algorithm is much higher compared to R-tree based search.

Algorithm 2 Sorting-based algorithm to create intersection
graph
INPUT: Set of Base Layer polygons Sb and Set of Overlay
Layer polygons So

OUTPUT: Intersection Graph (V ,E), where V is set of
polygons and E is edges among polygons with intersecting
bounding boxes.

Quicksort set So of overlay polygons based on X co-
ordinates of bounding boxes
for all base polygon Bi in set Sb of base polygons do

Find Sx ⊂ So such that Bi intersects with all polygons
in set Sx over X co-ordinate (binary search over So)
Quicksort Sx on y coordinates of bounding boxes
for each polygon Oj in Sx that Bi intersects with in Y
co-ordinate do
Create an edge (Bi, Oj ) in graph G
end for

end for

C. Our system with Static Load Balancing

Based on the method of intersection graph creation, we have
two flavors that employ static load balancing. One of them
makes use of R-tree (Algorithm 1) and the second one simply
uses binary search on polygons sorted on bounded boxes
(Algorithm 2). The rationale behind developing static version
is to assess the communication cost between master and slave
processes involved in the dynamic version. Although the basic
workflow is similar to dynamic version, task partitioning in the
static version is straightforward. After independently parsing
both of the input GML files, the slave processes equally divide
the base layer polygons among themselves based on their
process-IDs and perform task creation only for their portion
of base layer polygons, thereby obviating any need for master-
slave communication. Master process is only responsible for
merging the files created by different slave processes.

Output file creation is initiated by master process once all
the slave processes finish their tasks and terminate. Termi-
nation detection differs in static and dynamic version and
is handled by master process. In static version, once master
process receives task completion messages from all slave
processes, it merges the partial (local) output GML files
created by respective slave process to yield final output and
finally terminates. On the other hand, in the dynamic version,
master process interactively tracks the completion of tasks and
once all tasks are finished, it sends termination message to
each slave process and generates an output GML file.

IV. IMPLEMENTATION ISSUES

A. MPI related Issues

As seen in section III, each and every slave process reads
input files. The parsing of files is a sequential bottleneck here
and it is performed redundantly. This problem worsens, due
to i/o contention for the shared file system, when the number
of processors increase. It is, therefore, more intuitive to let
only master process parse files once, create task and schedule
them dynamically for slave processes to execute. We tried
this approach initially, but the underlying communication and
packing/unpacking overheads made it impractical.

1) MPI Send/Receive issue: In order to distribute work
among slave processes, the master needs to communicate
the tasks using MPI send/receive primitives. The vector
data needed for the GPC library is a nested structure
containing polygon information including number of con-
tours, number of vertices, bounding box information, etc.
The polygonal data is non-contiguous data of mixed data
types. Even though MPI provides derived data type for
user-defined data structures and packing routines, these
do not work for dynamically allocated nested structure
that we had to use.

2) Cost of serialization: To overcome the MPI Send/Receive
issue mentioned above, we serialized the polygonal data
as a text stream. In this version, master process creates
tasks, serializes and sends to slave processes. Each slave
process receives the message and deserializes to get
the task and performs overlay computation. Vector data
tends to be large in size and experimentally we found
that the cost of serialization/deserialization and message
communication is huge even for smaller grain sizes. Thus,
we chose the redundant file reads by all the slaves.

B. Clipper Library Related Issues

GPC library is a well-known open-source library for basic
polygon clipping operations but it has some limitations. First
and foremost, the GPC library only supports four operations -
intersection, X-OR, union, and difference. It does not sup-
port Equals, Crosses, Within, Contains, Disjoint, Touches,
and Overlap. Moreover, the library does not preserve the
relationship between a hole and the polygon that contains this
hole. Since we work with only one polygon pair at a time, this
is a non-issue as holes must belong to the resultant polygon.



Fig. 3: Skewed load distribution for smaller data set

Fig. 4: Comparatively uniform load distribution for larger data
set

However, our open-architecture allows replacing GPC library
with other libraries.

V. TIMING CHARACTERISTICS AND EXPERIMENTS

We have performed our experiments on a Linux cluster that
has 80 cores distributed among 9 compute nodes intercon-
nected by an InfiniBand network. The cluster contains 1) four
nodes with each having two AMD Quad-Core Opteron model
2376 (2.3 GHz), 2) one node with four AMD Quad-Core
Opteron model 8350 (2.0 GHz), and 3) four nodes with each

Fig. 5: Performance of sorting-based algorithm

Fig. 6: Performance of R-tree based algorithm

having two Intel Xeon Quad-Core 5410 (2.33 GHz) . In our
cluster, all the nodes share the same file system hosted at the
head node.

We experimented with two different sets of data. First set
consists of files of size 770 MBs containing 465,940 polygons
(overlay layer) and 64 MBs containing 8600 polygons (base
layer). This data set has skewed load distribution. The second
data set consists of files of size 484 MBs containing 200,000
polygons and 636 MBs containing 250,000 polygons. This is
the larger data set but the load distribution is uniform here.
Figure 3 and Figure 4 shows the load distribution plots for
a sample of the base layer polygons used in experiments.
To calculate absolute speedup against the sequential time
without any parallel overhead, unless otherwise stated, all
benchmarking has been performed over the end-to-end 1-core
time (the process of taking two GML files as input, performing
overlay processing, and saving the output as a GML file) using
R-tree based algorithm on the smaller data set and executed
on AMD Quad-Core Opteron model 2376 (2.3 GHz).

Figure 5 shows the absolute speedup when we use sorting-
based algorithm. For dynamic version using R-tree, the overall
end-to-end acceleration is about 15x as shown in Figure 6.
R-tree based version cleary shows better performance in com-
parison to the sorting based version. Dynamic version works
better than static version due to the non-uniform distribution of
polygonal data in small data set as we mentioned earlier. More-
over, master-slave communication time is relatively small.

Figure 7 shows the execution time breakdown of subpro-
cesses for the static versions. Task creation step involves
intersection graph creation based on either R-tree or sorting,



(a) Static Load Balancing (Sorting-based algorithm)

(b) Static Load Balancing (R-tree based algorithm)

Fig. 7: Execution time breakdown for static version (smaller
data set)

and task partitioning so that slave processors can work on in-
dependent tasks. Overlay processing step involves computing
overlay and writing the local output polygons to GML files.
Figure 8 shows the execution time breakdown of subprocesses
for dynamic versions. The reported time in Figure 7, 8 and 9
is the average time recorded by noting the time for each of the
three subprocesses, i.e., parsing, task creation, and overlay task
processing, for each slave process and then taking an average.
Overlay task processing includes assigning the tasks to GPC
library and is followed by the output storing step where the
local outputs are stored in the shared file system as a separate
file (one file for each slave process). The overlay processing
time in case of R-tree based version is more than sorting-based
version for the same dataset as can be seen from Figure 7(b)
and Figure 8(b). This is due to the fact that when we use
a third party implementation of R-tree data structure, we get
more potentially intersecting polygons for a given base layer
polygon in comparison to the sorting-based version. It should
be noted here that all the potentially intersecting polygons may
not actually intersect. So, this does not affect the correctness
of our final output.

Figure 9 shows the subprocess timing for R-tree based
versions using larger data set with comparatively uniform load
distribution. Even though the file sizes and the number of
pairs of polygons and thus tasks are higher for this larger
data set, the polygons themselves comprise fewer vertices
amounting to reduced execution times for overlay computation
in comparison with the “smaller” data set. For both the smaller
and the larger data sets, the overlay processing task scales very
well for static as well as dynamic load balancing as the number

(a) Dynamic Load Balancing (Sorting-based algorithm)

(b) Dynamic Load Balancing (R-tree based algorithm)

Fig. 8: Execution time breakdown for dynamic versions
(smaller data set)

(a) Static Load Balancing (R-tree based algorithm)

(b) Dynamic Load Balancing (R-tree based algorithm)

Fig. 9: Execution time breakdown using R-tree for larger data
set

of slave processors increase. The communication cost is small
in comparison with the cost of input file parsing and task
creation. However, we observed that due to the contention for
parallel file access, parsing of the input GML files and writing



of output files takes longer with the number of processors
growing. Further scaling of this system is challenging unless
high throughput file access can be supported and the task
creation and partitioning can be scaled.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have created an end-to-end system for
an important class of data intensive applications on Linux
cluster. The version with R-tree outperforms the version using
sorting and thus shows the efficiency of our approach. The
input and output GML file processing phases clearly point to
further acceleration possibly based on distributed file storage
of these GML files. The platform enables experimenting with
third party overlay solutions thus exhibiting flexibility of our
system. We are exploring use of parallel filesystems like
lustre and parallel virtual file system (pvfs2) to minimize i/o
bottleneck.
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