
Using Graphics Processing in Spatial Indexing

Algorithms

Mayuresh Kunjir & Aditya Manthramurthy

Abstract

In this project, we explore the use of graphics processing capabilities
to speed up spatial indexing in spatial databases. The R-Tree is a data
structure that is commonly used in databases to index spatial data. It
can index and query 2D geometries by keying on the Minimum Bounding
Rectangle (MBR) of each geometry. A query on this index is usually an
input geometry, and the output is a set of intersecting geometries from
the table. The MBR of the input geometry is used to search the R-
Tree index and �nd the output set of overlapping MBRs. The geometries
corresponding to the output MBRs obtained from the R-Tree are used to
perform an actual geometry intersection test to determine the presence of
intersections.

The properties of the R-Tree allow searching its di�erent branches
in parallel. We implement parallel R-Tree search using NVidia's CUDA
GPGPU architecture. We also added a geometry intersection test in the
PostGIS extension of the PostgreSQL database engine using the OpenGL
framework. We tested the performance of these algorithms using real
datasets. We also made an R-Tree visualizer to demonstrate the working
of the R-Tree join.

1 Introduction

A spatial index, indexes geometric objects. The R-Tree [1] is a commonly used
data structure that indexes geometric objects based on their Minimum Bounding
Rectangle (MBR) - the smallest rectilinear rectangle that covers the geometry.
A typical query

• gives a geometry and asks for all the geometries that overlap it - Intersec-
tion query; or

• gives a set of geometries (perhaps in the form of a separate spatial index),
and asks for each pair of overlapping geometries - Join query.

The intersection query is evaluated using the MBR of the input geometry and
then �nding all overlapping MBRs using the R-Tree. The geometries in the
MBRs returned by the tree are tested with the query geometry for an actual in-
tersection. In searching the R-Tree, multiple branches may need to be traversed,
and as each branch in independent of the others, this can be parallelized. We do
this using NVidia's CUDA [5] General Purpose GPU processing architecture.
Another area we identi�ed for improvement is the geometry intersection test.
For polygons with many edges, a full geometry test will involve testing for line

1



segment intersection of many pair of edges. By drawing these polygons in the
o�-screen framebu�er using blending, we are able to detect intersections using
the OpenGL framework. We improve on the algorithm to do geometry inter-
sections in hardware given in [4] and implement it in PostgreSQL database's
PostGIS [6] extension. PostGIS provides data types, indexing and query oper-
ations for spatial entities.

A join query is evaluated by taking each geometry in one of the sets and
performing the intersection query with it on the other set. We built a visual-
ization tool that simulates the execution of a spatial join query and displays all
the steps on the screen. We demonstrate with real datasets the execution of the
join in the PostgreSQL engine.

Distribution of the work

Aditya formulated and implemented the R-Tree search algorithm using CUDA.
We both wrote the core graphics intersection test using OpenGL and Mayuresh
integrated the test in PostGIS. The R-Tree visualization tool was written by
Mayuresh.

Overview

We begin with a description of the R-Tree enhancement using the graphics pro-
cessor in section 2. After that we describe the visualization tool. In section 4, we
describe the geometry intersection test implementation and some performance
results. We summarize our work and mention possible future work in the last
section.

2 R-Tree search using the Graphics Processor

The R-Tree is an important spatial indexing structure. An example is shown
in the �gure 1. The pink colored rectangles are the MBRs of the geometries
being indexed. The rectangles drawn dashed are internal nodes of the R-Tree.
The tree representation at the bottom shows how each node's MBR contains
the MBRs of all its children.

The R-Tree [1] search algorithm can be parallelized, as shown in [3], but it
is not a good algorithm because of its quadratic space requirement. The usual
(un-parallelized) search algorithm starts searching from the root and proceeds
recursively on each child node that intersects with the query MBR. We give a
new linear-space search algorithm suited for the CUDA programming model.

2.1 Overview of the CUDA programming model

A kernel is a function that can be de�ned in the C for CUDA extension of the C
programming language. These functions are executed N times in parallel by N
di�erent CUDA threads. Each thread has a thread index, that is unique within
a thread block, and this can be used to map parts of the input/output that
need to be processed by that thread. Each thread has private local memory.
Threads are grouped into thread blocks, which run in parallel on a single core of
the GPU and can share memory among threads of that block. Multiple thread

2



Figure 1: Example R-Tree

blocks may be running at a time on the GPU depending on the availability
of cores on the GPU. All threads also have access to the same global memory.
There is no locking facility in CUDA, so threads have to be careful about writing
shared data.

Data for CUDA threads has to be copied from the host device (the CPU of
the computer) using CUDA functions to device memory (the GPU). The results
have to be copied back from the device memory after the GPU has completed
execution. In our scenario, we use only one thread block to search the R-Tree.

2.2 R-Tree search algorithm on CUDA

We create two structures required for the R-Tree search algorithm on the CPU
and then load it into the device memory. Whenever a search query arrives, we
send it to the GPU and the threads execute the CUDA R-Tree search using the
R-Tree data that has been initially copied. If the R-Tree changes, the structures
for the CUDA R-Tree algorithm need to be copied once again. However we
assume that this will not be often because spatial data does not change very
frequently between queries.

The two structures that need to be stored in the GPU memory before hand
are two arrays. The �rst is an array of MBR co-ordinates, which we call Coord.

Coord[i] refers to the bottom-left and top-right co-ordinates of the i -th MBR in
the index. The second is an array of structures called Node. Node[i] consists of
(mbrID, childNodes[t]), and represents the R-Tree node with id i. The mbrID
is an index into the Coord array that gives the co-ordinates of the MBR of that

3



node. childNodes is an array of size t, where t is the capacity of the tree. Each
childNode element is an index into the Node array representing the children of
the node i.

When the search query is made, a kernel call is made into the GPU. A thread
block is launched. The threads in the thread block �rst copy the two structures
into shared thread-block memory for e�ciency. The threads next declare two
more shared memory areas, for arrays of bits currentSearch and nextSearch.
The length of each array equals N , the number of nodes in the R-Tree (which is
less than the number of geometries indexed by the tree). These two bit-arrays
are shared between all threads. Before executing the main loop, the bit for the
root node is set in the currentSearch array.

Before we delve into the workings of the main loop, it is worth mentioning
that only a constant number (say C) of threads can be running in a single thread
block (current devices can run about 512). The arrays that are being shared
above are going to be manipulated in parallel. Since CUDA has no locking
mechanisms, we have to clearly separate which threads manipulate what. We do
this using thread indexes. The thread with index i, only touches array locations
(N/C)k + i for each k. This should make sure that no thread accidentally
corrupts shared memory.

The main loop executes the following instructions in order as long as cur-
rentSearch has a set bit. In the following, <SyncThreads> represents a CUDA
synchronization primitive that will make each thread wait until all threads reach
that point in the execution.

1. Clear the nextSearch array (in parallel). <SyncThreads>.

2. For each bit i belonging to this thread, if currentSearch[i] is set:

(a) For each child node j (looked up from childNodes) that overlaps with
the query MBR:

i. If the child node is a leaf, mark it as part of the output.

ii. If the child is not a leaf, mark it in the nextSearch array.

3. <SyncThreads>.

4. Copy nextSearch into currentSearch (in parallel). <SyncThreads>.

The output is copied to the CPU and returned in the application as the result
of the query.

It is easy to see that the algorithm is a straightforward parallelization of the
R-Tree search algorithm.

2.3 Implementation

The R-Tree base source code that we used for the implementation is at [9]. This
source is intended for researching/testing R-Tree and related structures. We
used data from [10]. We construct and copy the R-Tree structures Coord and
Node after loading all the geometries into the tree. For each search query, a
kernel call is made that uses the copied data to �nd the candidate geometries
as described above. The copied data is persistent across multiple kernel calls,
and persists till the application quits.

4



2.3.1 Di�culties in implementing the above algorithm in a real database

We initially proposed to implement the algorithm in the Oracle and PostgreSQL
database systems. Modifying these databases involves re-implementing a part
of the R-Tree code, namely the intersection search function. To the best of our
knowledge Oracle Spatial does not export the R-Tree's search function imple-
mentation. Oracle Spatial sources are proprietary and not open. We turned to
the open source PostgreSQL database to try to implement the algorithm, but
there were a few di�culties that delayed us. PostgreSQL does not use a normal
R-Tree to implement indexing. It uses a Generalized Search Tree (GiST) [2]
to maintain indexes. By de�ning certain key methods for these trees, they can
become B-Trees, R-Trees, etc. The search function is generic to all these types
of trees. The search code in PostgreSQL in also complicated by the fact that
each call to the function should return only one tuple, and so it saves the context
of the execution internally. Because of this, implementing search in the GPU
would be even more complicated, as we should return only one tuple on each
call and perhaps maintain state in the GPU. Due to this increased complexity,
we could not complete coding it in the database.

3 Visualization of Spatial Join

Normal join on the database compares every tuple of one relation with each
tuple of other relation and based on some condition(like equality on attributes)
decides whether to include the pair in the result. In the case of spatial joins, since
we are working on the attributes representing some geometries(their location in
particular); the join conditions can be area intersection or containment. For
example, suppose you wanted to tell customers where they can �nd the nearest
branch o�ce of your business, or you want to compare di�erent wildlife species
with information about the habitats they live in. These types of queries can be
answered with a spatial join. To handle such queries, we need to build spatial
indexes and algorithms which operate on them to produce the result e�ciently.
In this section, we will �rst see how index can be used to calculate spatial join.
We will then show the working of our visualization tool which shows the whole
join process visually and then give the implementation details.

3.1 Spatial index for joins

The naive way to do spatial join would be considering all pairs of tuples of
relation A and relation B and check for join condition. If join condition is �nding
geometries intersections, we will check intersection between all the pairs. The
following block shows one such nested loop join plan generated from PostgreSQL
server.

temp=# explain select * from land, building where Intersects

(land.the_geom, building.the_geom);

QUERY PLAN

-------------------------------------------------------------------------

Nested Loop (cost=18.41..6077.01 rows=89380 width=1517)

Join Filter: intersects(land.the_geom, building.the_geom)

-> Seq Scan on land (cost=0.00..25.45 rows=545 width=887)

5



-> Materialize (cost=18.41..23.33 rows=492 width=630)

-> Seq Scan on building (cost=0.00..17.92 rows=492 width=630)

(5 rows)

Nested loops consume lot of time because of the processing of all the tuples.
R − tree index is used in such cases to improve the performance. The index is
built by considering Minimum Bounding Rectangles of the geometries. The
internal nodes of R-tree consist of rectangles representing a collection of MBRs
while each leaf represents MBR of a geometry. So while joining two relations,
we check whether MBRs at root level intersect and only if they are intersecting,
we descend to the next level. This saves a lot of intersection tests as in most of
the cases, we �nd that geometries only intersect at a very small number places
and we don't have to check geometries lying in other locations.

We are using PostgreSQL database engine and its spatial database exten-
der PostGIS which allows execution of spatial queries from PostgreSQL engine
by adding some new functions and operators in PostgreSQL. Postgres uses a
generalized index called GiST (Generalized Search Tree) [2] which provides all
the basic search tree logic required by a database system, thereby unifying dis-
parate structures such as B+-tree and R-tree in a single piece of code. PostGIS
provides methods to make GiST behave as R-tree. An example query which
uses the index is shown below.

temp=# explain select * from land, hydrology where (land.the_geom

&& hydrology.the_geom);

QUERY PLAN

-----------------------------------------------------------------------

Nested Loop (cost=0.00..30.16 rows=1 width=1559)

-> Seq Scan on hydrology (cost=0.00..1.04 rows=4 width=672)

-> Index Scan using assets_land_idx_the_geom on land (cost=0.00..7.27

rows=1 width=887)

Index Cond: (land.the_geom && hydrology.the_geom)

(4 rows)

In this query, we are trying to �nd all the entries from relations land and
hydrology whose MBRs intersect1. The query plan shows that index on land is
used while hydrology is sequentially scanned.

3.2 Visualization tool

We have developed a visualization tool to see the working of R-tree index vi-
sually. The tool takes two relations whose join we want to �nd and the log
generated by databases engine when the join was carried out as its input and
then shows the step-by-step execution of join visually. In summary, following
steps are carried out.

1. Get the contents of the two relations from database table in a �le.

2. Execute the spatial join on database engine and get the generated log.

3. Parse the �les and load all the geometries in a structure.

1&& operator �nds whether MBRs of its two arguments intersect or not

6



4. Draw all the geometries on the screen.
Use di�erent color for the two relations to distinguish them.
Tessellate the polygons as they may be concave.

5. Start scanning the log �le.
Do this for all the entries of the log.
If current entry is a R-tree node, highlight the MBRs it is representing.
(The internal nodes and leaves are highlighted di�erently.)
If current entry is the actual geometries which is checked when the corre-
sponding MBRs intersect, highlight those geometries.

To show an example, we executed a join query on relations land and hydrology
to �nd if there are any land encroachments happening on the area reserved for
water canals. The query plan is shown below.

temp=# explain select * from land, hydrology where ST_Intersects

(land.the_geom, hydrology.the_geom);

QUERY PLAN

-------------------------------------------------------------------

Nested Loop (cost=0.00..30.17 rows=1 width=1559)

Join Filter: _st_intersects(land.the_geom, hydrology.the_geom)

-> Seq Scan on hydrology (cost=0.00..1.04 rows=4 width=672)

-> Index Scan using assets_land_idx_the_geom on land

(cost=0.00..7.27 rows=1 width=887)

Index Cond: (land.the_geom && hydrology.the_geom)

(5 rows)

This query scans each tuple of relation hydrology and uses index on land to
�rst check whether MBRs intersect. The actual geometry intersection is carried
out only if the MBRs are found to be intersecting. The generated log tells us
the execution of all the tests. An example entry from log is given below:

GIST: rtree_leaf_consist called with strategy=3
0 257643.73 896902.56 257843.34 897113.25 252280 898880 254100 899740 0

The �rst line tells us that this is a leaf node entry of R-tree. Second line
has the following format
<Sr. No.> <MBR of �rst geometry(x1 y1 x2 y2)> <MBR of second geome-
try(x1 y1 x2 y2)> <result of intersection (0:no intersection and 1:intersection)>

we use the log to highlight the geometries/MBRs which are processed cur-
rently. A snapshot of the tool in �gure 2. The yellow colored polygons represent
relation land while blue ones are from hydrology. The highlighted MBRs are
the MBRs which are being considered currently and those which are found in-
tersecting which will be later on checked for actual intersection. The hollow
white rectangles show the internal R-tree nodes which are found intersecting
with the current MBR of hydrology.

Some of the features of the visualization tools are:

• It can represent any type of polygon because of the use of tessellation.

7



Figure 2: R-tree visualization tool

• There is provision to see the actual co-ordinates of any point shown on
screen by clicking the particular point.

• You can zoom into the scene if you want to see the geometries in high
resolution.

• The simulation of R-tree can be paused/resumed and also controls are
provided to increase/decrease the speed.

3.3 Implementation details

The R-tree visualization tool is developed using standard OpenGL library. To
get the inputs for this visualization tool, we made some changes to database
engine. The geometry inputs which are the contents of the database table are
easily generated by projecting the geometry column of the required relation and
using resulting �le to parse the geometry. We used the datasets provided by [10].
The important part is to generate the log. Though database engine maintains
the log, it contains lot of other information like noting the entry in each function
which is of no importance to our visualization tool. So we decided to create a
separate log �le for our purpose.

To build the log �le, we had to put the necessary debug information from
database engine. The PostGIS extension of the PostgreSQL database engine
provides the functions to compare the index entry with the provided key(i.e.
the geometry MBR) and also the functions to check the intersection of the
geometries. To generate debug information of index processing, we had to un-
derstand about 1500 lines of code of PostGIS and add code to put the debug
data to log �le.

8



For the actual intersection test, the PostGIS carries out some short-circuit
tests �rst and then uses a library calledGEOS[7] which implements the OpenGIS
[12] simple features for SQL spatial predicate functions and spatial operators
to carry out the main intersection test. The details of this test are given in
next section. To generate the debug information, we read about 10,000 lines of
PostGIS code and about 1000 lines of GEOS code and added the code to write
the data to log �le.

4 Intersection using Graphics

As we saw in last section, a spatial join can have intersection test as the join
condition and in the evaluation of the join, we need to carry out a lot of inter-
section tests. Since polygons can have arbitrary number of edges, it's di�cult
to �nd intersection between given two polygons in a non-exhaustive way all
the time. We will discuss in the following subsections how PostGIS carries out
intersections �rst and a simple graphics intersection test suggested in [4]. We
implemented this test in PostGIS, the details of which and the results are given
in next subsections.

4.1 Geometry intersection in PostGIS

There are three possible intersection queries possible in PostGIS viz.
a. Intersection between MBRs
b. Find if geometries intersect
c. Find intersecting points of two geometries.

We focus on second query which tells if two geometries intersect or not.
PostGIS carries out MBR intersection test �rst to rule out some possibilities
and then actual intersection test is carried out. The entire �ow is shown in
�gure 3. PostGIS uses some GEOS library functions which are shown in red
boxes while the functions provided by PostGIS are shown in blue boxes. As
can be seen, many optimizations are carried out to avoid exhaustive algorithm
which is to �nd intersection for all pairs of edges of two given geometries. So for
most of the input tuples, short-circuit tests give the result and we don't have to
do exhaustive test thus saving time.

4.2 Graphics intersection test

The paper [4] talks about a simple intersection test using graphics where two
polygons are drawn on screen with some color with color blending enabled. If
the two polygons intersect at some point, that point will have the color which is
the addition of color components of two polygons. We read whole pixel bu�er
and look for this color value and if found one, conclude that geometries intersect.
An example is shown in �gure 4 which shows two intersecting rectangles. The
overlapping region shows white color while geometries are drawn with grey color.
The paper suggests to put this test after MBR intersection test and before actual
software intersection test.

Though the test looks simple, there are some issues in deciding resolution of
the image to ensure that we don't miss out on some intersections. To give an
example, consider that the two polygons range from (0, 0) to (104, 104) and the

9



Figure 3: Geometry intersection �ow diagram

Figure 4: Graphics intersection test

10



intersecting part is only of area 10−3, you probably won't see the intersecting
region rendered on the screen. We suggest a small improvement in this part.
Since we only get geometries for this test only after �nding that their MBRs
overlap, we are sure that bounding rectangles overlap in some part. So we
can render only this overlapping part on screen because if the geometries are
intersecting they can intersect only in this part and other part of geometries is of
no interest to us. We can �nd almost all the intersections with this improvement.
In one of our test queries where MBRs of one geometry were larger by the order
of 4 approximately than MBRs of other geometry, we were only able to �nd 7
out of 124 intersections with earlier test. But with this improvement, we are
able to �nd all 124 intersections.

4.3 A problem

Though we improve on the suggested algorithm by only rendering MBR overlap
region, we may not still �nd intersection in some cases. These are the cases
where polygons are concave and have very high MBR overlap but very small
actual intersecting region. An example is shown in �gure below. But these
cases are very rare and we haven't come across such situation on the datasets
we have worked upon. In most of the cases, most of the MBR overlap region
contains the geometries and thus our test goes through. But to be on safer side,
we follow this test with software intersection tests provided by GEOS library.

4.4 Implementation details

To implement graphics intersection test, we have to do o�-screen rendering of
the polygons. O�-screen rendering is not a core part of OpenGL. So we use
the o�-screen rendering provided by GLX window system interface. We use
pbuffers which allow hardware accelerated rendering to an o�-screen bu�er
[8]. We �rst need to establish a connection to X server to use pbu�ers. We do
this when we establish the connection to PostgreSQL server. The code for which
is inserted in PostmasterMain() routine which is the main entry point of the
database server. The resource freeing is done in the routine ExitPostmaster()
which is called when the connection to server is terminated. The PostgreSQL
database engine is linked with graphics libraries to use these graphics routines.

The main intersection test is implemented in PostGIS. After MBR intersection
test is carried out, the routine intersects() of �le lwgeom_geos.c is called as
shown in �gure 3 which in turn calls some routines of GEOS library to carry

11



Q1(time in ms) Q2(time in ms)
without graphics test 31 44
pbu�er 500× 500 30496 3264
pbu�er 200× 200 4910 577
pbu�er 100× 100 1261 189

Table 1: Comparison of performance of join with/without graphics test and the
e�ect of changing pbu�er size

out actual intersection. We put our intersection test in between these two tests.
We draw the two geometries on the window with color (0.5, 0.5, 0.5), the context
for the window was set initially in PostmasterMain(). The blending is enabled
so that the colors get added in overlapping region. Remember, we only draw
overlapping regions of the MBRs as discussed in previous subsection. So we
map this overlapping region to the size of the window. After drawing these
geometries, we read the pixel buffer. While this bu�er is read from GPU
memory to main memory, the minimum and maximum color values of the bu�er
are found out in hardware which we read by using function glGetMinmax()
function. Here we only read red component from pixel bu�er to reduce the
transfer. We check whether maximum value is 1. If found, we declare that
intersection is found.

4.5 Results

Our goal of doing this exercise of putting graphics intersection test was to en-
hance the performance of the spatial join queries. So we tried to execute some
queries with this test enabled and without the test and compare the results. We
used a dataset depicting hydrological boundaries of U.S. [11]. We found that
graphics intersection test is very slow compared to software intersection tests
and the main bottleneck is reading of the frame bu�er for each intersection test
which involves transfer of the data from GPU memory to main memory. As
can be seen from results given below in table 1, when we use pixel bu�er of size
500 × 500 we get degradation as much as of the order 3. To verify that pixel
bu�er is the bottleneck, we carried out some experiments by changing pixel
bu�er size. As can be seen in table, as we reduce the size of pixel bu�er, the
processing gets faster. But reducing pixel bu�er also means that we are com-
promising on the accuracy of the algorithm as we are reducing the screen space
to draw the geometries. These results show that there is no use of adding the
graphics intersection test unless we use some faster ways of GPU processing.

5 Conclusion and future work

In our work, we implemented R-Tree search algorithm using GPGPU. The al-
gorithm uses linear space as opposed to quadratic space used by [3]. A visual-
ization tool is developed to show the working of R-Tree in join processing. We
also implemented a simple hardware intersection test in PostgreSQL database
which is an improvement over the one suggested in [4]. The performance results
of this test show that because of the bottleneck of the slow transfer of data from

12



GPU memory to main memory, we get huge degradation. The test is written
for only speci�c join queries which test whether given two geometries intersect
or not. It can be extended to some other queries like containment easily. To
reduce the overhead of data transfer from GPU to main memory, we can use
CUDA functions to parallelize the function to �nd maximum color value from
pixel bu�er. Also in future, we would like to implement R-Tree search algorithm
using CUDA in PostgreSQL database engine.

References

[1] A. Guttman, "Rtrees: a dynamic index structure for spatial searching", in
Proceedings of ACM SIGMOD International Conference on Management of
Data, pp. 47-57, 1984.

[2] Joseph M. Hellerstein , Je�rey F. Naughton , Avi Pfe�er, Generalized Search
Trees for Database Systems, Proceedings of the 21th International Confer-
ence on Very Large Data Bases, p.562-573, September 11-15, 1995.

[3] Xiao X., Shi T., Vaidya P., Lee J., R-Tree: A Hardware Implementation, In
2008, 3-9. Proc. of International Conf. on Computer Design.

[4] Chengyu Sun, Divyakant Agrawal, Amr El Abbadi, Hardware Acceleration
for Spatial Selection and Join, In Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data.

[5] CUDA home http://www.nvidia.com/object/cuda_home.html

[6] PostGIS home http://postgis.refractions.net/

[7] GEOS library http://trac.osgeo.org/geos/

[8] O�-screen rendering http://www.mesa3d.org/brianp/sig97/offscrn.

htm

[9] R-Tree base source code http://www2.research.att.com/~marioh/

spatialindex/

[10] PGCon 2009 http://www.pgcon.org/2009/schedule/events/174.en.

html

[11] John Watermolen., 1:2,000,000-Scale Hydrologic Unit Boundaries. U.S. Ge-
ological Survey, 2001.

[12] OpenGIS standard http://www.opengeospatial.org/standards/sfs

13

http://www.nvidia.com/object/cuda_home.html
http://postgis.refractions.net/
http://trac.osgeo.org/geos/
http://www.mesa3d.org/brianp/sig97/offscrn.htm
http://www.mesa3d.org/brianp/sig97/offscrn.htm
http://www2.research.att.com/~marioh/spatialindex/
http://www2.research.att.com/~marioh/spatialindex/
http://www.pgcon.org/2009/schedule/events/174.en.html
http://www.pgcon.org/2009/schedule/events/174.en.html
http://www.opengeospatial.org/standards/sfs

	Introduction
	R-Tree search using the Graphics Processor
	Overview of the CUDA programming model
	R-Tree search algorithm on CUDA
	Implementation
	Difficulties in implementing the above algorithm in a real database


	Visualization of Spatial Join
	Spatial index for joins
	Visualization tool
	Implementation details

	Intersection using Graphics
	Geometry intersection in PostGIS
	Graphics intersection test
	A problem
	Implementation details
	Results

	Conclusion and future work

